Skip to main content
Log in

Spectroscopic and electrical sensing mechanism in oxidant-mediated polypyrrole nanofibers/nanoparticles for ammonia gas

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ammonia gas sensing mechanism in oxidant-mediated polypyrrole (PPy) nanofibers/nanoparticles has been studied through spectroscopic and electrical investigations. PPy nanofibers/nanoparticles have been synthesized by chemical oxidation method in the presence of various oxidizing agents such as ammonium persulfate (APS), potassium persulfate (PPS), vanadium pentoxide (V2O5), and iron chloride (FeCl3). Scanning electron microscopy study revealed that PPy nanofibers of about 63, 71 and 79 nm diameters were formed in the presence of APS, PPS, V2O5, respectively, while PPy nanoparticles of about 100–110 nm size were obtained in the presence of FeCl3 as an oxidant. The structural investigations and confirmation of synthesis of PPy were established through Fourier transform infrared and Raman spectroscopy. The gas sensing behavior of the prepared PPy samples is investigated by measuring the electrical resistance in ammonia environment. The observed gas sensing response \( \left( {{{\Updelta R} \mathord{\left/ {\vphantom {{\Updelta R} R}} \right. \kern-0pt} R} \times 100} \right) \) at 100 ppm level of ammonia is ~4.5 and 18 % for the samples prepared with oxidizing agents FeCl3 and APS, respectively, and by changing the ammonia level from 50 to 300 ppm, the sensing response varies from ~4.5 to 11 % and ~10 to 39 %, respectively. Out of all four samples, the PPy nanofibers prepared in the presence of APS have shown the best sensing response. The mechanism of gas sensing response of the PPy samples has been investigated through Raman spectroscopy study. The decrease of charge carrier concentration through reduction of polymeric chains has been recognized through Raman spectroscopic measurements recorded in ammonia environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bai H, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7:267–307

    Article  CAS  Google Scholar 

  • Brunet E, Maier T, Mutinati GC, Steinhauer S, Köck A, Gspan C, Grogger W (2012) Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors. Sens Actuators B 165:110–118

    Article  CAS  Google Scholar 

  • Chitte HK, Bhat NV, Gore AV, Shinde GN (2011a) Synthesis of polypyrrole using ammonium peroxy disulfate (APS) as oxidant together with some dopants for use in gas sensors. Mater Sci Appl 2:1491–1498

    CAS  Google Scholar 

  • Chitte HK, Bhat NV, Walunj VE, Shinde GN (2011b) Synthesis of polypyrrole using ferric chloride (FeCl3) as oxidant together with some dopants for use in Gas sensors. J Sens Technol 1:47–56

    Article  CAS  Google Scholar 

  • Cho JH, Yu JB, Kim JS, Sohn SO, Lee DD, Huh JS (2005) Sensing behaviors of polypyrrole sensor under humidity condition. Sens Actuators B 108:389–392

    Article  CAS  Google Scholar 

  • Crowley K, Cassidy J (2003) In situ resonance Raman spectroelectrochemistry of polypyrrole films. J Electroanal Chem 547:75–82

    Article  CAS  Google Scholar 

  • Fu H, Jiang X, Yang X, Yu A, Su D, Wang G (2012) Glycothermal synthesis of assembled vanadium oxide nanostructures for gas sensing. J Nanopart Res 14:871

    Article  Google Scholar 

  • Geng W, Li N, Li X, Wang R, Tu J, Zhang T (2007) Effect of polymerization time on the humidity sensing properties of polypyrrole. Sens Actuators B 125:114–119

    Article  CAS  Google Scholar 

  • Ghosh P, Siddhanta SK, Chakrabarti A (1999) Characterization of poly(vinyl pyrrolidone) modified polyaniline prepared in stable aqueous medium. Euro Polym J 35:699–710

    Article  CAS  Google Scholar 

  • Han GY, Yuan JY, Shi GQ, Wei F (2005) Electrodeposition of polypyrrole/multiwalled carbon nanotube composite films. Thin Solid Films 474:64–69

    Article  CAS  Google Scholar 

  • Henkel K, Oprea A, Paloumpa I, Appel G, Schmeiβer D, Kamieth P (2001) Selective polypyrrole electrodes for microbalances: NO2 and gas flux sensitivities. Sens Actuators B 76:124–129

    Article  CAS  Google Scholar 

  • Hernandez SC, Chaudhuri D, Chen W, Myung NV, Mulchandani A (2007) Single polypyrrole nanowire ammonia gas sensor. Electroanalysis 19:2125–2130

    Article  CAS  Google Scholar 

  • Huang J, Xu X, Gu C, Wang W, Geng B, Sun Y, Liu J (2012) Effective VOCs gas sensor based on porous SnO2 microcubes prepared via spontaneous phase segregation. Sens Actuators B 173:599–606

    Article  CAS  Google Scholar 

  • Huyen DN, Tung NT, Vinh TD, Thien ND (2012) Synergistic effects in the gas sensing response of polypyrrole/single wall carbon nanotube composites. Sensors 12:7965–7974

    Article  CAS  Google Scholar 

  • Ishpal, Kaur A (2013) Spectroscopic investigations of ammonia gas sensing mechanism in polypyrrole nanotubes/nanorods. J Appl Phys 113:094504-1-11

  • Jang J, Bae J (2007) Carbon nanofiber/polypyrrole nanocable as toxic gas sensor. Sens Actuators B 122:7–13

    Article  CAS  Google Scholar 

  • Joshi A, Gangal SA, Gupta SK (2011) Ammonia sensing properties of polypyrrole thin films at room temperature. Sens Actuators B 156:938–942

    Article  CAS  Google Scholar 

  • Kharat HJ, Kakde KP, Sevale PA, Datta K, Ghosh P, Shirsat MD (2007) Synthesis of polypyrrole films for the development of ammonia sensor. Polym Adv Technol 18:397–402

    Google Scholar 

  • Kim DU, Yoo B (2011) A novel electropolymerization method for Ppy nanowire-based NH3 gas sensor with low contact resistance. Sens Actuators B 160:1168–1173

    Article  CAS  Google Scholar 

  • Kopecký D, Vrňata M, Vysloužil F, Myslík V, Fitl P, Ekrt O, Matějka P, Jelínek M, Kocourek T (2009) Polypyrrole thin films for gas sensors prepared by matrix-assisted pulsed laser evaporation technology: effect of deposition parameters on material properties. Thin Solid Films 517:2083–2087

    Article  Google Scholar 

  • Krishnakumar T, Jayaprakash R, Raj DS, Pinna N, Singh VN, Phani AR, Neri G (2011) Microwave-assisted synthesis, characterization and ammonia sensing properties of polymer-capped star-shaped zinc oxide nanostructures. J Nanopart Res 13:3327–3334

    Article  CAS  Google Scholar 

  • Kuemmeth F, Ilani S, Ralph DC, McEuen L (2008) Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452:448–452

    Article  CAS  Google Scholar 

  • Kwon WJ, Suh DH, Chin BD, Yu JW (2008) Preparation of polypyrrole nanoparticles in mixed surfactants system. J Appl Polym Sci 110:1324–1329

    Article  CAS  Google Scholar 

  • Kwon OS, Hong JY, Park SJ, Jang Y, Jang J (2010) Resistive gas sensors based on precisely size-controlled polypyrrole nanoparticles: effects of particle size and deposition method. J Phys Chem C 114:18874–18879

    Article  CAS  Google Scholar 

  • Liu Y, Hwang W, Jian W, Santhanam R (2000) In situ cyclic voltammetry-surface-enhanced Raman spectroscopy: studies on the doping–undoping of polypyrrole film. Thin Solid Film 374:85–91

    Article  CAS  Google Scholar 

  • Mabrook MF, Pearson C, Petty MC (2006) Inkjet-printed polypyrrole thin films for vapour sensing. Sens Actuators B 115:547–551

    Article  CAS  Google Scholar 

  • Park S, Kim S, Han S (2007) Growth of homo epitaxial ZnO film on ZnO nanorods and light emitting diode applications. Nanotechnology 18:1–6

    Article  Google Scholar 

  • Pillalamarri SK, Blum FD, Tokuhiro AT, Story JG, Bertino MF (2005) Radiolytic synthesis of polyaniline nanofibers: a new templateless pathway. Chem Mater 17:227–229

    Article  CAS  Google Scholar 

  • Qin H, Kulkarni A, Zhang H, Kim H, Jiang D, Kim T (2011) Polypyrrole thin film fiber optic chemical sensor for detection of VOCs. Sens Actuators B 158:223–228

    Article  CAS  Google Scholar 

  • Qiu T, Xie H, Zhang J, Zahoor A, Li X (2011) The synthesis of Ag/polypyrrole coaxial nanocables via ion adsorption method using different oxidants. J Nanopart Res 13:1175–1182

    Article  CAS  Google Scholar 

  • Sarma TK, Chowdhury D, Paul AJ (2002) Synthesis of Au nanoparticle-conductive polyaniline composite using H2O2 as oxidising as well as reducing agent. Chem Commun 10:1048–1049

    Article  Google Scholar 

  • Segal E, Tchoudakov R, Narkis M, Siegmann A, Wei Y (2005) Polystyrene/polyaniline nanoblends for sensing of aliphatic alcohols. Sens Actuators B 104:140–150

    Article  CAS  Google Scholar 

  • Shang Y, Wang X, Xu E, Tong C, Wu J (2011) Optical ammonia gas sensor based on a porous silicon rugate filter coated with polymer-supported dye. Anal Chim Acta 685:58–64

    Article  CAS  Google Scholar 

  • Su PG, Lee CT, Chou CY (2009) Flexible NH3 sensors fabricated by in situ self-assembly of polypyrrole. Talanta 80:763–769

    Article  CAS  Google Scholar 

  • Tang Z, Kotov NA (2005) One-dimensional assemblies of nanoparticles: preparation, properties and promise. Adv Mater 17:951–962

    Article  CAS  Google Scholar 

  • Tavoli F, Alizadeh N (2013) Optical ammonia gas sensor based on nanostructure dye-doped polypyrrole. Sens Actuators B 176:761–767

    Article  CAS  Google Scholar 

  • Tian B, Zerbi G (1990a) Lattice dynamics and vibrational spectra of polypyrrole. J Chem Phys 92:3886–3891

    Article  CAS  Google Scholar 

  • Tian B, Zerbi G (1990b) Lattice dynamics and vibrational spectra of pristine and doped polypyrrole: effective conjugation coordinate. J Chem Phys 92:3892

    Article  CAS  Google Scholar 

  • Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–889

    Article  CAS  Google Scholar 

  • Weng S, Zhou J, Lin Z (2010) Preparation of one-dimensional (1D) polyaniline–polypyrrole coaxial nanofibers and their application in gas sensor. Synth Met 160:1136–1142

    Article  CAS  Google Scholar 

  • Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389

    Article  CAS  Google Scholar 

  • Yoon H, Chang M, Jang J (2006) Sensing behavior of polypyrrole nano tubes prepared in reverse micromulsions: effects of tranducers size and transduction mechanism. J Phys Chem B 110:14074–14077

    Article  CAS  Google Scholar 

  • Zhang X, Zhang J, Song W, Liu Z (2006) Controllable synthesis of conducting polypyrrole nanostructures. J Phys Chem B110:1158–1165

    Google Scholar 

  • Zhang Y, Wang L, Mascarenhas A (2007) Quantum coaxial cables for solar energy harvesting. Nano Lett 7:1264–1269

    Article  CAS  Google Scholar 

  • Zhang L, Meng F, Chen Y, Liu J, Sun Y, Luo T, Li M, Liu J (2009) A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays. Sens Actuators B 142:204–209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Department of Science and Technology, Govt. of India for sponsoring project SR/S2/CMP-0099/2010. The authors are also thankful to Vice Chancellor, University of Delhi, India for financial assistance. One of the authors (Ishpal) acknowledges Council of Scientific and Industrial Research (CSIR) for financial assistance during his Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarjeet Kaur.

Additional information

Special Issue Editors: Juan Manuel Rojo, Vasileios Koutsos

This article is part of the topical collection on Nanostructured Materials 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishpal, Kaur, A. Spectroscopic and electrical sensing mechanism in oxidant-mediated polypyrrole nanofibers/nanoparticles for ammonia gas. J Nanopart Res 15, 1637 (2013). https://doi.org/10.1007/s11051-013-1637-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1637-y

Keywords

Navigation