Advertisement

On the role of Pb0 atoms on the nucleation and growth of PbSe and PbTe nanoparticles

  • Domingo I. Garcia-GutierrezEmail author
  • Lina M. De Leon-Covian
  • Diana F. Garcia-Gutierrez
  • M. Treviño-Gonzalez
  • M. A. Garza-Navarro
  • S. Sepulveda-Guzman
Research Paper

Abstract

In this contribution, a nucleation and growth mechanism of PbSe and PbTe nanoparticles are proposed. The formation and growth of PbSe and PbTe nanoparticles during their reaction synthesis were studied and followed using transmission electron microscopy, and their related techniques. In the synthesis method, trioctylphosphine-selenide and telluride were used as the chalcogen precursors, while lead oleate was employed as the lead precursor. Different synthesis conditions were tested to assess the effect of varying the reaction time, lead to chalcogen ratio, reaction temperature, and lead oleate concentration. The synthesized nanoparticles were characterized by means of electron diffraction, energy dispersive X-ray spectroscopy, scanning transmission electron microscopy, and electron energy loss spectroscopy, to obtain information related to their morphology, crystal structure, and composition. The experimental results suggest that the growth of the lead chalcogenide nanoparticles greatly relies on the reduction of Pb2+ ions to Pb0 atoms at early reaction times; this reduction of the lead precursor is evidenced by the formation of Pb nanoparticles with sizes between 1 and 3 nm under certain synthesis conditions. These Pb nanoparticles gradually disappear as the reaction progresses, suggesting that the reduced Pb0 atoms are able to contribute to the growth of the PbSe and PbTe nanoparticles, reaching sizes between 8 and 18 nm. The current results contribute to a better understanding of the nucleation and growth mechanisms of lead chalcogenide nanoparticles, which will enable the definition of more efficient synthesis routes of these types of nanostructures.

Keywords

Lead chalcogenides PbSe PbTe Nanoparticles 

Notes

Acknowledgments

This study was supported by the Mexican Secretary of Education (SEP), PROMEP program, through the project “Apoyo a la Incorporacion de Nuevos PTC”, Project Number PROMEP/103.5/10/3889, and by CONACYT Mexico through Project Numbers 148391 and 154303. The authors also thank the International Center for Nanotechnology and Advanced Materials, ICNAM, at the University of Texas at San Antonio, for the support provided for the use of their Advanced Microscopy Center. LMDC and DFGG thank and acknowledge the financial support received from CONACYT Mexico.

References

  1. Achimovičová M, Daneu N, Rečnik A, Ďurišin J, Baláž P, Fabián M, Kováč J, Šatka A (2009) Characterization of mechanochemically synthesized lead selenide. Chem Pap 63(5):562–567CrossRefGoogle Scholar
  2. Cho K-S, Talapin DV, Gaschler W, Murray CB (2005) Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127:7140–7147CrossRefGoogle Scholar
  3. Choi JJ, Lim Y-F, Santiago-Berrios MB, Oh M, Hyun B-R, Sun L, Bartnik AC, Goedhart A, Malliaras GG, Abruña HD, Wise FW, Hanrath T (2009) PbSe nanocrystal excitonic solar cells. Nano Lett 9(11):3749–3755CrossRefGoogle Scholar
  4. Cui D, Xu J, Zhu T, Paradee G, Ashok S (2006) Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Appl Phys Lett 88:183111CrossRefGoogle Scholar
  5. Du H, Chen C, Krishnan R, Krauss TD, Harbold JM, Wise FW, Thomas MG, Silcox J (2002) Optical properties of colloidal PbSe nanocrystals. Nano Lett 2(11):1321–1324CrossRefGoogle Scholar
  6. Evans CM, Evans ME, Krauss TD (2010) Mysteries of TOPSe revealed: insights into quantum dot nucleation. J Am Chem Soc 132:10973–10975CrossRefGoogle Scholar
  7. Houtepen AJ, Koole R, Vanmaekelbergh D, Meeldijk J, Hickey SGJ (2006) The hidden role of acetate in the PbSe nanocrystal synthesis. J Am Chem Soc 128:6792–6793CrossRefGoogle Scholar
  8. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427CrossRefGoogle Scholar
  9. Johnston KW, Pattantyus-Abraham AG, Clifford JP, Myrskog SH, Hoogland S, Shukla H, Klem EJD, Levina L, Sargent EH (2008) Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl Phys Lett 92:122111CrossRefGoogle Scholar
  10. Kerner R, Palchik O, Gedanken A (2001) Sonochemical and microwave-assisted preparations of PbTe and PbSe.A comparative study. Chem Mater 13:1413–1419CrossRefGoogle Scholar
  11. Koleilat GI, Levina L, Shukla H, Myrskog SH, Hinds S, Pattantyus-Abraham AG, Sargent EH (2008) Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2(5):833–840CrossRefGoogle Scholar
  12. Lifshitz E, Bashouti M, Kloper V, Kigel A, Eisen MS, Berger S (2003) Synthesis and characterization of PbSe quantum wires, multipods, quantum rods, and cubes. Nano Lett 3(6):857–862CrossRefGoogle Scholar
  13. Liu H, Owen JS, Alivisatos P (2007) Mechanistic study of precursor evolution in colloidal Group II–VI semiconductor nanocrystal synthesis. J Am Chem Soc 129:305–312CrossRefGoogle Scholar
  14. Lu W, Fang J, Stokes KL, Lin JJ (2004) Shape evolution and self assembly of monodisperse PbTe nanocrystals. J Am Chem Soc 126:11798–11799CrossRefGoogle Scholar
  15. Mokari T, Zhang M, Yang PJ (2007) Shape, size, and assembly control of PbTe nanocrystals. J Am Chem Soc 129:9864CrossRefGoogle Scholar
  16. Moreels I, Fritzinger B, Martins JC, Hens ZJ (2008) Surface chemistry of colloidal PbSe nanocrystals. J Am Chem Soc 130:15081–15086CrossRefGoogle Scholar
  17. Murphy JE, Beard MC, Norman AG, Ahrenkiel SP, Johnson JC, Yu P, Micic OI, Ellingson RJ, Nozik AJ (2006) PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. J Am Chem Soc 128:3241–3247CrossRefGoogle Scholar
  18. Owen JS, Chan EM, Liu H, Alivisatos P (2010) Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. J Am Chem Soc 132:18206–18213CrossRefGoogle Scholar
  19. Tai G, Zhou B, Guo W (2008) Structural characterization and thermoelectric transport properties of uniform single-crystalline lead telluride nanowires. J Phys Chem C 112:11314–11318CrossRefGoogle Scholar
  20. Wang Y, Cai K, Yao X (2011a) Facile fabrication and thermoelectric properties of PbTe-modified poly(3,4-ethylenedioxythiophene) nanotubes. ACS Appl Mater Interfaces 3:1163–1166CrossRefGoogle Scholar
  21. Wang YY, Cai KF, Yin JL, An BJ, Du Y, Yao X (2011b) In situ fabrication and thermoelectric properties of PbTe–polyaniline composite nanostructures. J Nanopart Res 13:533–539CrossRefGoogle Scholar
  22. Wise FW (2000) Lead salt quantum dots: the limit of strong quantum confinement acc. Chem Res 33:773–780CrossRefGoogle Scholar
  23. Yan Q, Chen H, Zhou W, Hng HH, Chiang Boey FY, Ma J (2008) A simple chemical approach for PbTe nanowires with enhanced thermoelectric properties. Chem Mater 20:6298–6300CrossRefGoogle Scholar
  24. Yang Y, Taggart DK, Cheng MH, Hemminger JC, Penner RM (2010) High-throughput measurement of the seebeck coefficient and the electrical conductivity of lithographically patterned polycrystalline PbTe nanowires. J Phys Chem Lett 1:3004–3011CrossRefGoogle Scholar
  25. Yu WW, Falkner JC, Shih BS, Colvin VL (2004) Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem Mater 16:3318–3322CrossRefGoogle Scholar
  26. Zhang G, Lu X, Wang W, Li X (2007) Facile synthesis of a hierarchical PbTe flower-like nanostructure and its shape evolution process guided by a kinetically controlled regime. Chem Mater 19:5207–5209CrossRefGoogle Scholar
  27. Ziqubu N, Ramasamy K, Rajasekhar PVSR, Revaprasadu N, O’Brien P (2010) Simple route to dots and rods of PbTe nanocrystals. Chem Mater 22:3817–3819CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Domingo I. Garcia-Gutierrez
    • 1
    • 2
    Email author
  • Lina M. De Leon-Covian
    • 1
    • 2
  • Diana F. Garcia-Gutierrez
    • 1
    • 2
  • M. Treviño-Gonzalez
    • 2
  • M. A. Garza-Navarro
    • 1
    • 2
  • S. Sepulveda-Guzman
    • 1
    • 2
  1. 1.Facultad de Ingeniería Mecánica y Eléctrica, FIMEUniversidad Autónoma de Nuevo León, UANLSan Nicolás de los GarzaMexico
  2. 2.Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, CIIDIT, Universidad Autónoma de Nuevo León, UANLApodacaMexico

Personalised recommendations