Skip to main content

Advertisement

Log in

Hydrogenated polyisoprene-silica nanoparticles and their applications for nanocomposites with enhanced mechanical properties and thermal stability

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Hydrogenated polyisoprene (HPIP)-SiO2 nanocomposites were synthesized via differential microemulsiion polymerization followed by diimide hydrogenation. First, the isoprene monomer was polymerized on the silane treated nanosilica by differential microemulsion polymerization to obtain polyisoprene (PIP)-SiO2 nanoparticles with a particle size of 43 nm. PIP-SiO2 latex was subsequently hydrogenated at the carbon–carbon double bonds by diimide reduction in the presence of hydrazine and hydrogen peroxide with boric acid as promotor to provide HPIP-SiO2 nanocomposites. Core–shell morphology consisting of silica as the nano-core encapsulated by HPIP as the nano-shell was formed. The highest hydrogenation degree of 98 % was achieved at a ratio of hydrogen peroxide to hydrazine of 1.5:1. The nanosized HPIP-SiO2 at 98 % hydrogenation showed a maximum degradation temperature of 521 °C resulting in excellent thermal stability, compared with unfilled PIP (387 °C). A new nanocomposite of HPIP-SiO2 could be used as a novel nanofiller in natural rubber. Consequently, HPIP-SiO2/NR composites had improved mechanical properties and exhibited a good retention of tensile strength after thermal aging and good resistance toward ozone exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cassano GA, Valles EM, Quinzani LM (1998) Structure of partially hydrogenated polybutadienes. Polymer 39:5573–5577

    Article  CAS  Google Scholar 

  • Chang JR, Huang SM (1998) Pd/Al2O3 catalysts for selective hydrogenation of polystyrene-block-polybutadiene-block-polystyrene thermoplastic elastomers. Ind Eng Chem Res 37:1220–1227

    Article  CAS  Google Scholar 

  • De Sarkar M, De PP, Bhowmick AK (1997) Thermoplastic elastomeric hydrogenated styrene-butadiene elastomer: optimization of reaction conditions, thermodynamics and kinetics. J Appl Polym Sci 66:1151–1162

    Article  Google Scholar 

  • De Sarkar M, De PP, Bhowmick AK (2000) Diimide reduction of carboxylated styrene-butadiene rubber in latex stage. Polymer 41:907–915

    Article  Google Scholar 

  • Esthappan SK, Kuttappan SK, Joseph R (2012) Effect of titanium dioxide on the thermal ageing of polypropylene. Polym Degrad Stab 97:615–620

    Article  CAS  Google Scholar 

  • Fernandes RMB, Visconte LLY, Nunes RCR (2011) Curing characteristics and aging properties of natural rubber/epoxidized natural rubber and cellulose II. Int J Polymeric Materials 60:351–364

    Article  CAS  Google Scholar 

  • Gemlin C, Markovic MG, Dutta NK, Choudhurry NR, Matisons JG (2000) Structural effects on the decomposition kinetics of EPDM elastomers by high-resolution TGA and modulated TGA. J Therm Anal Cal 59:319–336

    Article  Google Scholar 

  • He G, Pan Q, Rempel GL (2003) Synthesis of poly(methyl methacrylate) nanosize particles by differential microemulsion polymerization. Macromol Rapid Commun 24:585–588

    Article  CAS  Google Scholar 

  • Hinchiranan N, Prasassarakich P, Rempel GL (2006) Hydrogenation of natural rubber in the presence of OsHCl(CO)(O2)(PCy3)2: kinetics and mechanism. J Appl Polym Sci 100:4499–4514

    Article  CAS  Google Scholar 

  • Ismail H, Freakley PK, Sutherland I, Sheng E (1995) Effects of multifunctional additive on mechanical properties of silica filled natural rubber compound. Eur Polym J 31:1109–1117

    Article  CAS  Google Scholar 

  • Kongsinlark A, Prasassarakich P, Rempel GL (2012) Synthesis of monodispersed polyisoprene-silica nanoparticles via differential microemulsion polymerization and mechanical properties of polyisoprene nanocomposite. Chem Eng J 193:215–226

    Article  Google Scholar 

  • Kruzelak J, Hudec I, Dosoudil R (2012) Influence of thermo-oxidative and ozone ageing on the properties of elastomeric magnetic composites. Polym Degrad Stab 97:921–928

    Article  CAS  Google Scholar 

  • Lin X, Pan Q, Rempel GL (2004a) Cupric ion catalyzed diimide production from the reaction between hydrazine and hydrogen peroxide. Appl Catal A 263:27–32

    Article  CAS  Google Scholar 

  • Lin X, Pan Q, Rempel GL (2004b) Hydrogenation of nitrile-butadiene rubber latex with diimide. Appl Catal A 276:123–128

    Article  CAS  Google Scholar 

  • Mahittikul A, Prasassarakich P, Rempel GL (2007a) Noncatalytic hydrogenation of natural rubber latex. J Appl Polym Sci 103:2885–2895

    Article  CAS  Google Scholar 

  • Mahittikul A, Prasassarakich P, Rempel GL (2007b) Diimide hydrogenation of natural rubber latex. J Appl Polym Sci 105:1188–1199

    Article  CAS  Google Scholar 

  • Mariano RM, Picciani PHS, Nunes RCR, Visconte LLY (2011) Preparation, structure, and properties of montmorillonite/cellulose II/natural rubber nanocomposites. J Appl Polym Sci 120:458–465

    Article  CAS  Google Scholar 

  • Norakankorn C, Pan Q, Rempel GL, Kiatkamjornwong S (2007) Synthesis of poly(methyl methacrylate) nanoparticle initiated by 2,2′-azoisobutyrontrile via differential microemulsion polymerization. Macromolecular 28:1029–1033

    CAS  Google Scholar 

  • Nussbaumer RG, Caseri W, Tervoort T, Smith P (2002) Synthesis and characterization of surface-modified rutile nanoparticles and transparent polymer composites thereof. J Nanopart Res 4:319–323

    Article  CAS  Google Scholar 

  • Peng Z, Kong LX, Li SD, Chen Y, Huang MF (2007) Self-assembled natural rubber/silica nanocomposites: its preparation and characterization. Composite Sci Technol 67:3130–3139

    Article  CAS  Google Scholar 

  • Qi DM, Bao YZ, Weng ZX, Huang ZM (2006) Preparation of acrylate polymer/silica nanocomposite particles with high silica encapsulation efficiency via miniemulsion polymerization. Polymer 47:4622–4629

    Article  CAS  Google Scholar 

  • Radhakrishnan CK, Alex R, Unnikrishnan G (2006) Thermal, ozone and gamma ageing of styrene butadiene rubber and poly(ethylene-co-vinyl acetate) blends. Polym Degrad Stab 91:902–910

    Article  CAS  Google Scholar 

  • Simma K, Rempel GL, Prasassarakich P (2009) Improving thermal and ozone stability of skim natural rubber by diimde reduction. Polym Degrad Stab 94:1914–1923

    Article  CAS  Google Scholar 

  • Stockelhuber KW, Svistkov AS, Pelevin AG, Heinrich G (2011) Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules 44:4366–4381

    Article  Google Scholar 

  • Suppaibulsuk B, Prasassarakich P, Rempel GL (2010) Factorial design of nanosized polyisoprene synthesis via differential microemulsion polymerization. Polym Adv Technol 21:467–475

    CAS  Google Scholar 

  • Tangthongkul R, Prasassarakich P, McManus NT, Rempel GL (2004) Hydrogenation of cis-1,4-polyisoprene catalyzed by Ru(CH=CH(Ph))Cl(CO)(PCy3)2. J Appl Polym Sci 91:3259–3273

    Article  CAS  Google Scholar 

  • Vinod VS, Siby V, Kuriakuse B (2002) Degradation behaviour of natural rubber–aluminium powder composites: effect of heat, ozone and high energy radiation. Polym Degrad Stab 75:405–412

    Article  CAS  Google Scholar 

  • Vollath D, Szabo DV, Schlabachand S (2004) Oxide/polymer nanocomposites as new luminescent materials. J Nanopart Res 6:181–191

    Article  CAS  Google Scholar 

  • Vostovich JE (1981) Heat resistant ethylene-propylene rubber with improved tensile properties and insulated conductor product thereof. US Patent 4,303,574

  • Wang Q, Luo Y, Feng C, Yi Z, Qiu Q, Kong LX, Peng Z (2011) Reinforcement of natural rubber with core-shell structure silica-poly(methyl methacrylate) nanoparticles. J Nanomaterials 2012:1–9

    Google Scholar 

  • Wideman LG (1984) Process for hydrogenation of carbon–carbon double bonds in an unsaturated polymer in latex form. US Patent 4,452,950

  • Xie HQ, Li XD, Guo JS (2003) Hydrogenation of nitrile–butadiene rubber latex to form thermoplastic elastomer with excellent thermooxidation resistance. J Appl Polym Sci 90:1026–1031

    Article  CAS  Google Scholar 

  • Xie XL, Li RKY, Liu QX, Mai YW (2004) Structure-property relationships of in situ PMMA modified nano-sized antimony trioxide filled poly(vinyl chloride) nanocomposites. Polymer 45:2793–2802

    Article  CAS  Google Scholar 

  • Yan H, Sun K, Zhang Y, Zhang Y (2005) Effect of nitrile rubber on properties of silica filled natural rubber compounds. Polym Test 24:32–38

    Article  Google Scholar 

  • Yang F, Yngard RI, Nelson GL (2005) Flammability of polymer–clay and polymer–silica nanocomposites. J Fire Sci 23:209–226

    Article  Google Scholar 

  • Zhou S, Bai H, Wang J (2004) Hydrogenation of acrylonitrile-butadiene rubber latexes. J Appl Polym Sci 91:2072–2078

    Article  CAS  Google Scholar 

  • Zhu A, Shi Z, Cai A, Zhao F, Liao T (2008) Synthesis of core–shell PMMA–SiO2 nanoparticles with suspension–dispersion–polymerization in an aqueous system and its effect on mechanical properties of PVC composites. Polym Test 27:540–547

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the Thailand Research Fund (through the Royal Golden Jubilee Project), Graduate School, Chulalongkorn University, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Thai Government Stimulus Package 2 (TKK2555) under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products, and Agriculture and the National Research University Project of CHE and Ratchadaphiseksomphot Endowment Fund (AM1024I).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Garry L. Rempel or Pattarapan Prasassarakich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 223 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kongsinlark, A., Rempel, G.L. & Prasassarakich, P. Hydrogenated polyisoprene-silica nanoparticles and their applications for nanocomposites with enhanced mechanical properties and thermal stability. J Nanopart Res 15, 1612 (2013). https://doi.org/10.1007/s11051-013-1612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1612-7

Keywords

Navigation