Skip to main content
Log in

Visible-light-sensitive nanoscale Au–ZnO photocatalysts

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The role of gold nanoparticles supported on ZnO in photocatalytic activity for dye degradation was investigated. To this end, gold nanoparticles supported on ZnO (Au–ZnO) were prepared using a simple co-precipitation method. The prepared nanocatalyst was characterized by high-resolution transmission electron microscopy, X-ray diffraction, temperature-programmed reduction, X-ray photoelectron spectroscopy, UV–Vis absorption, and photoluminescence. The photocatalytic activity of Au–ZnO was examined by the degradation of methylene blue in aqueous solution using a light source that has more than 95 % (i.e., energy) of emitted photons between 400 and 800 nm. Highly enhanced photocatalytic degradation of methylene blue in air at room temperature was observed from these Au–ZnO nanocatalysts with gold particle size ranging from 2 to 7 nm, with an average size of 3.8 nm. The observed rate constant for MB degradation on Au–ZnO was 0.0118/min compared with 0.0007/min for pure ZnO. Furthermore, the charge transfer pathway for the degradation of methylene blue in Au–ZnO is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anandan S, Miyauchi M (2011) Ce-doped ZnO (Ce x Zn1−x O) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu2+) grafting. Phys Chem Chem Phys 13(33):14937–14945

    Article  CAS  Google Scholar 

  • Bergeret G, Gallezot P (1997) Handbook of heterogeneous catalysis. In: Ertl G, Knozinger H (eds) VCH, Weinheim, pp 439–462

  • Chang H, Nikolov J, Kim SK, Jang HD, Lim S, Kim DJ (2011) Preparation and characterization of vanadium-doped ZnO nanoparticles for environmental application. J Nanosci Nanotechnol 11(1):681–685

    Article  CAS  Google Scholar 

  • Chen B, Zhang H, Du N, Li D, Ma X, Yang D (2009) Hybrid nanostructures of Au nanocrystals and ZnO nanorods: layer-by-layer assembly and tunable blue-shift band gap emission. Mater Res Bull 44(4):889–892

    Article  CAS  Google Scholar 

  • Chuang HY, Chen DH (2009) Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles. Nanotechnology 20(10):105704

    Article  Google Scholar 

  • Claus P (2005) Heterogeneously catalysed hydrogenation using gold catalysts. Appl Catal A 291(1–2):222–229

    CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  Google Scholar 

  • Djurišić AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2(8–9):944–961

    Google Scholar 

  • Do Y, Choi JS, Kim SK, Sohn Y (2010) The interfacial nature of TiO2 and ZnO nanoparticles modified by gold nanoparticles. Bull Korean Chem Soc 31(8):2170–2217

    Article  CAS  Google Scholar 

  • Donkova B, Vasileva P, Nihtianova D, Velichkova N, Stefanov P, Mehandjiev D (2011) Synthesis, characterization, and catalytic application of Au/ZnO nanocomposites prepared by coprecipitation. J Mater Sci 46(22):7134–7143

    Article  CAS  Google Scholar 

  • Du L, Furube A, Yamamoto K, Hara K, Katoh R, Tachiya M (2009) Plasmon-induced charge separation and recombination dynamics in gold–TiO2 nanoparticle systems: dependence on TiO2 particle size. J Phys Chem C 113(16):6454–6462

    Article  CAS  Google Scholar 

  • Georgekutty R, Seery MK, Pillai SC (2008) A highly efficient Ag–ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C 112(35):13563–13570

    Article  CAS  Google Scholar 

  • Graciani J, Nambu A, Evans J, Rodriguez JA, Sanz JF (2008) Au ↔ N synergy and N-doping of metal oxide-based photocatalysts. J Am Chem Soc 130(36):12056–12063

    Article  CAS  Google Scholar 

  • Guzman J, Gates BC (2004) Catalysis by supported gold: correlation between catalytic activity for CO oxidation and oxidation states of gold. J Am Chem Soc 126(9):2672–2673

    Article  CAS  Google Scholar 

  • Haldar KK, Sen T, Patra A (2008) Au@ZnO core-shell nanoparticles are efficient energy acceptors with organic dye donors. J Phys Chem C 112(31):11650–11656

    Article  CAS  Google Scholar 

  • Hayata K, Gondalb MA, Khaleda MM, Ahmedc S, Shemsi AM (2011) Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Appl Catal A 393(1–2):122–129

    Google Scholar 

  • Heger D, Jirkovský J, Klán P (2005) Aggregation of methylene blue in frozen aqueous solutions studied by absorption spectroscopy. J Phys Chem A 109(30):6702–6709

    Article  CAS  Google Scholar 

  • Hou X, Wang L, He G, Ha J (2012) Synthesis, optical and electrochemical properties of ZnO nanorod hybrids loaded with high-density gold nanoparticles. Cryst Eng Comm 14(16):5158–5162

    Article  CAS  Google Scholar 

  • Kim KJ, Ahn HG (2009) Complete oxidation of toluene over bimetallic Pt–Au catalysts supported on ZnO/Al2O3. Appl Catal B 91(1–2):308–318

    CAS  Google Scholar 

  • Lai JJ, Lin YJ, Chen YH, Chang HC, Liu CJ, Zou YY, Shih YT, Wang MC (2011) Effects of Na content on the luminescence behavior, conduction type, and crystal structure of Na-doped ZnO films. J Appl Phys 110(1):013704

    Article  Google Scholar 

  • Lee MK, Tu HF (2008) Au–ZnO and Pt–ZnO films prepared by electrodeposition as photocatalysts. J Electrochem Soc 155(12):D758–D762

    Article  CAS  Google Scholar 

  • Li Y, Zhang H, Guo Z, Han J, Zhao X, Zhao Q, Kim SJ (2008) Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst. Langmuir 24(15):8351–8357

    Article  CAS  Google Scholar 

  • Li H, Liu ET, Chan FYF, Lu Z, Chen R (2011a) Fabrication of ordered flower-like ZnO nanostructures by a microwave and ultrasonic combined technique and their enhanced photocatalytic activity. Mater Lett 35(23–24):3440–3443

    Article  Google Scholar 

  • Li P, Wei Z, Wu T, Peng Q, Li Y (2011b) Au–ZnO hybrid nanopyramids and their photocatalytic properties. J Am Chem Soc 133(15):5660–5663

    Article  CAS  Google Scholar 

  • Liu X, Liu MH, Luo YC, Mou CY, Lin SD, Cheng H, Chen JM, Lee JF, Lin TS (2012) Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J Am Chem Soc 134(24):10251–10258

    Article  CAS  Google Scholar 

  • Minicò S, Scirè S, Crisafulli C, Galvagno S (2001) Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide. Appl Catal B 34(4):277–285

    Article  Google Scholar 

  • Naknam P, Luengnaruemitchai A, Wongkasemjit S (2009) Au/ZnO and Au/ZnO–Fe2O3 prepared by deposition-precipitation and their activity in the preferential oxidation of CO. Energy Fuels 23(10):5084–5091

    Article  CAS  Google Scholar 

  • Pauporté T, Rathouský J (2007) Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants. J Phys Chem C 111(21):7639–7644

    Article  Google Scholar 

  • Pawinrat P, Mekasuwandumrong O, Panpranot J (2009) Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catal Commun 10(10):1380–1385

    Article  CAS  Google Scholar 

  • Peng YY, Hsieh TE, Hsu CH (2006) White-light emitting ZnO–SiO2 nanocomposite thin films prepared by the target-attached sputtering method. Nanotechnology 17(1):174–180

    Article  CAS  Google Scholar 

  • Primo A, Corma A, García H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13(3):886–910

    Article  CAS  Google Scholar 

  • Qian K, Huang W, Fang J, Lv S, He B, Jiang Z, Wei S (2008) Low-temperature CO oxidation over Au/ZnO/SiO2 catalysts: some mechanism insights. J Catal 255(2):269–278

    Article  CAS  Google Scholar 

  • Radnik J, Mohr C, Claus P (2003) On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis. Phys Chem Chem Phys 5(1):172–177

    Article  CAS  Google Scholar 

  • Rodriguez JA, Evans J, Graciani J, Park JB, Liu P, Hrbek J, Sanz JF (2009) High water-gas shift activity in TiO2 (110) supported Cu and Au nanoparticles: role of the oxide and metal particle size. J Phys Chem C 113(17):7364–7370

    Article  CAS  Google Scholar 

  • Sandoval A, Gomez-Cortes A, Zanella R, Dıaz G, Saniger JM (2007) Gold nanoparticles: support effects for the WGS reaction. J Mol Catal A 278(1–2):200–208

    CAS  Google Scholar 

  • Saunders AE, Popov I, Banin U (2002) Synthesis of hybrid CdS–Au colloidal nanostructures. J Phys Chem B 110(50):25421–25429

    Article  Google Scholar 

  • Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) CO oxidation over supported gold catalysts-“inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal 197(1):113–122

    Article  CAS  Google Scholar 

  • Subramanian V, Wolf EE, Kamat PV (2003) Green emission to probe photoinduced charging events in ZnO–Au nanoparticles. charge distribution and Fermi-level equilibration. J Phys Chem B 107(30):7479–7485

    Article  CAS  Google Scholar 

  • Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K (2006) All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat Mater 5(10):782–786

    Article  CAS  Google Scholar 

  • Udawatte N, Lee M, Kim J, Lee D (2011) Well-defined Au/ZnO nanoparticle composites exhibiting enhanced photocatalytic activities. ACS Appl Mater Interfaces 3(11):4531–4538

    Article  CAS  Google Scholar 

  • Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156(1–3):194–200

    Article  CAS  Google Scholar 

  • Valden M, Pak S, Lai X, Goodman DW (1998) Structure sensitivity of CO oxidation over model Au/TiO2 catalysts. Catal Lett 56(1):7–10

    Article  CAS  Google Scholar 

  • Wang X, Kong X, Yu Y, Zhang H (2007) Synthesis and characterization of water-soluble and bifunctional ZnO–Au nanocomposites. J Phys Chem C 111(10):3836–3841

    Article  CAS  Google Scholar 

  • Wang LC, Liu Q, Huang XS, Liu YM, Cao Y, Fan KN (2009a) Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation. Appl Catal B 88(1–2):204–212

    CAS  Google Scholar 

  • Wang Q, Geng B, Wang S (2009b) ZnO/Au hybrid nanoarchitectures: wet-chemical synthesis and structurally enhanced photocatalytic performance. Environ Sci Technol 43(23):8968–8973

    Article  CAS  Google Scholar 

  • Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37(9):2028–2045

    Article  CAS  Google Scholar 

  • Wu JJ, Tseng CH (2006) Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl Catal B 66(1–2):51–57

    CAS  Google Scholar 

  • Wu Y, Liu H, Zhang J, Chen F (2009) Enhanced photocatalytic activity of nitrogen-doped titania by deposited with gold. J Phys Chem C 113(33):14689–14695

    Article  CAS  Google Scholar 

  • Wu JM, Fang CW, Lee LT, Yeh HH, Lin YH, Yeh PH, Tsai LN, Lin LJ (2011) Photoresponsive and ultraviolet to visible-light range photocatalytic properties of ZnO–Sb nanowires. J Electrochem Soc 158(1):K6–K10

    Article  CAS  Google Scholar 

  • Xiao Q, Zhang J, Xiao C, Tan X (2007) Photocatalytic decolorization of methylene blue over Zn1−x Co x O under visible light irradiation. Mater Sci Eng B 142(2–3):121–125

    Article  CAS  Google Scholar 

  • Xiao F, Wang F, Fu X, Zheng Y (2012) A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications. J Mater Chem 22(7):2868–2877

    Article  CAS  Google Scholar 

  • Yu H, Chen M, Rice PM, Wang SX, White RL, Sun S (2005) Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano Lett 5(2):379–382

    Article  CAS  Google Scholar 

  • Zhang D, Zeng F (2012) Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye. J Mater Sci 47(5):2155–2161

    Article  CAS  Google Scholar 

  • Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J, Zhu Y (2007) Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property. Inorg Chem 46(16):6675–6682

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Oregon Nanoscience and Micro-technologies Institute (ONAMI) and Oregon Built Environment and Sustainable Technologies (Oregon BEST) Center. The authors would like to thank Paravee Vas-Umnuay for her help with the solar simulator set-up. The authors also thank Won-Ju Ahn at Sunchon National University for conducting the TPR experiments and Dr. Tomas Novet at Voxtel for the PL measurements. We are thankful to Dr. Stephen Golledge and Joshua Raznik at CAMCOR, The University of Oregon, for valuable assistance in obtaining, analyzing and interpreting XPS and HRTEM data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hung Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KJ., Kreider, P.B., Chang, CH. et al. Visible-light-sensitive nanoscale Au–ZnO photocatalysts. J Nanopart Res 15, 1606 (2013). https://doi.org/10.1007/s11051-013-1606-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1606-5

Keywords

Navigation