Abstract
Surface-enhanced Raman spectroscopy is a popular tool for the detection of extremely small quantities of target molecules. Au nanoparticles have been very successful in this respect due to local enhancement of the light intensity caused by their plasmon resonance. Furthermore, Au nanoparticles are biocompatible, and target substances can be easily attached to their surface. Here, we demonstrate that Au-decorated CdSe nanowires when employed as SERS substrates lead to an enhancement as large as 105 with respect to the flat Au surfaces. In the case of hybrid metal–CdSe nanowires, the Au nucleates preferably on lattice defects at the lateral facets of the nanowires, which leads to a homogeneous distribution of Au nanoparticles on the nanowire, and to an efficient quenching of the nanowire luminescence. Moreover, the size of the Au nanoparticles can be well controlled via the AuCl3 concentration in the fabrication process. We demonstrate the effectiveness of our SERS substrates with two target substances, namely, cresyl-violet and rhodamine-6G. Au-decorated nanowires can be easily fabricated in large quantities at low cost by wet-chemical synthesis. Furthermore, their deposition onto various substrates, as well as the functionalization of these wires with the target substances, is as straightforward as with the traditional markers.
Similar content being viewed by others
References
Cabrini S, Carpentiero A, Kumar R, Businaro L, Candeloro P, Prasciolu M, Gosparini A, Andreani C, De Vittorio M, Stomeo T, Di Fabrizio E (2005) Focused ion beam lithography for two dimensional array structures for photonic applications. Microelectron Eng 78(79):11
Chung AJ, Huh YS, Erickson D (2011) Large area flexible SERS active substrates using engineered nanostructures. Nanoscale 3(7):2903
Coluccio ML, Das G, Mecarini F, Gentile F, Pujia A, Bava L, Tallerico R, Candeloro P, Liberale C, De Angelis F, Di Fabrizio E (2009) Silver-based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition. Microelectron Eng 86(4–6):1085
Cyrankiewicz M, Kruszewski S (2011) In: Kotur B, Bragiel P (eds), 15th International Seminar on Physics and Chemistry of Solids
Das G, Mecarini F, Gentile F, De Angelis F, Kumar MHG, Candeloro P, Liberale C, Cuda G, Di Fabrizio E (2009) Nano-patterned SERS substrate: application for protein analysis vs. temperature. Biosens Bioelectron 24(6):1693
Das G, Patra N, Gopalakrishnan A, Zaccaria RP, Toma A, Thorat S, Di Fabrizio E, Diaspro A, Salerno M (2012) Fabrication of large-area ordered and reproducible nanostructures for SERS biosensor application. Analyst 137(8):1785
De Angelis F, Das G, Candeloro P, Patrini M, Galli M, Bek A, Lazzarino M, Maksymov I, Liberale C, Andreani LC, Di Fabrizio E (2010) Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat Nanotechnol 5(1):67
De Angelis F, Gentile F, Mecarini F, Das G, Moretti M, Candeloro P, Coluccio ML, Cojoc G, Accardo A, Liberale C, Zaccaria RP, Perozziello G, Tirinato L, Toma A, Cuda G, Cingolani R, Di Fabrizio E (2011) Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photonics 5(11):683
Dzhagan VM, Lokteva I, Himcinschi C, Kolny-Olesiak J, Valakh MY, Schulze S, Zahn DRT (2011) The influence of pyridine ligand onto the structure and phonon spectra of CdSe nanocrystals. J Appl Phys 109(8):084334
Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995) Self-assembled metal colloid monolayers—an approach to SERS substrates. Science 267(5204):1629
Giugni A, Das G, Alabastri A, Zaccaria RP, Zanella M, Franchini I, Di Fabrizio E, Krahne R (2012) Optical phonon modes in ordered core-shell CdSe/CdS nanorod arrays. Phys Rev B 85(11):115413
Gunnarsson L, Bjerneld EJ, Xu H, Petronis S, Kasemo B, Kall M (2001) Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl Phys Lett 78(6):802
Haertling T, Alaverdyan Y, Hille A, Wenzel MT, Kall M, Eng LM (2008) Optically controlled interparticle distance tuning and welding of single gold nanoparticle pairs by photochemical metal deposition. Opt Express 16(16):12362
Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105(24):5599
Haynes CL, McFarland AD, Van Duyne RP (2005) Surface-enhanced Raman spectroscopy. Anal Chem 77(17):338A
Jen-La Plante I, Habas SE, Yuhas BD, Gargas DJ, Mokari T (2009) Interfacing metal nanoparticles with semiconductor nanowires. Chem Mater 21(15):3662
Jensen L, Schatz GC (2006) Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. J Phys Chem A 110(18):5973
Khon E, Mereshchenko A, Tarnovsky AN, Acharya K, Klinkova A, Hewa-Kasakarage NN, Nemitz I, Zamkov M (2011) Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites. Nano Lett 11(4):1792
Krahne R, Chilla G, Schueller C, Kudera S, Tari D, De Giorgi M, Heitmann D, Cingolani R, Manna L (2006) Shape dependence of the scattering processes of optical phonons in colloidal nanocrystals detected by Raman Spectroscopy. J Nanoelectron Optoelectron 1(1):104
Kudelski A (2005) Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: do dye molecules adsorb preferentially on highly SERS-active sites? Chem Phys Lett 414(4–6):271
Kuno M (2008) An overview of solution-based semiconductor nanowires: synthesis and optical studies. Phys Chem Chem Phys 10(5):620
Laurence TA, Braun G, Talley C, Schwartzberg A, Moskovits M, Reich N, Huser T (2009) Rapid, solution-based characterization of optimized SERS nanoparticle substrates. J Am Chem Soc 131(1):162
Lavieville R, Zhang Y, Casu A, Genovese A, Manna L, Di Fabrizio E, Krahne R (2012) Charge transport in nanoscale all-inorganic networks of semiconductor nanorods linked by metal domains. ACS Nano 6(4):2940
Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794
Lee J-H, Mahmoud MA, Sitterle VB, Sitterle JJ, Meredith JC (2009a) Highly scattering, surface-enhanced Raman scattering-active, metal nanoparticle-coated polymers prepared via combined swelling-heteroaggregation. Chem Mater 21(23):5654
Lee S, Chon H, Lee M, Choo J, Shin SY, Lee YH, Rhyu IJ, Son SW, Oh CH (2009b) Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres. Biosens Bioelectron 24(7):2260
Li W, Camargo PHC, Lu X, Xia Y (2009) Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett 9(1):485
Li P, Lappas A, Lavieville R, Zhang Y, Krahne R (2012) CdSe–Au nanorod networks welded by gold domains: a promising structure for nano-optoelectronic components. J Nanopart Res 14(7):978
Liu YC (2002) Evidence of chemical effect on surface-enhanced Raman scattering of polypyrrole films electrodeposited on roughened gold substrates. Langmuir 18(1):174
Liu HW, Zhang L, Lang XY, Yamaguchi Y, Iwasaki HS, Inouye YS, Xue QK Chen MW (2011) Single molecule detection from a large-scale SERS-active Au79Ag21 substrate, Scientific Reports 1
Menagen G, Mocatta D, Salant A, Popov I, Dorfs D, Banin U (2008) Selective Gold Growth on CdSe Seeded CdS Nanorods. Chem Mater 20(22):6900
Michota A, Bukowska J (2003) Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J Raman Spectrosc 34(1):21
Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116(15):6755
Mokari T, Rothenberg E, Popov I, Costi R, Banin U (2004) Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304(5678):1787
Mondal B, Saha SK (2010) Fabrication of SERS substrate using nanoporous anodic alumina template decorated by silver nanoparticles. Chem Phys Lett 497(1–3):89
Mongin D, Shaviv E, Maioli P, Crut AL, Banin U, Del Fatti N, Vallée F (2012) Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids. ACS Nano 6(8):7034
Morton SM, Jensen L (2009) Understanding the molecule-surface chemical coupling in SERS. J Am Chem Soc 131(11):4090
Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102
Otto C, Vandentweel TJJ, Demul FFM, Greve J (1986) Surface enhanced Raman spectroscopy of DNA bases. J Raman Spectrosc 17(3):289
Pieczonka NPW, Aroca RF (2008) Single molecule analysis by surfaced-enhanced Raman scattering. Chem Soc Rev 37(5):946
Puthussery J, Kosel TH, Kuno M (2009) Facile synthesis and size control of II-VI nanowires using bismuth salts. Small 5(10):1112
Rycenga M, Xia X, Moran CH, Zhou F, Qin D, Li Z-Y, Xia Y (2011) Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. Angewandte Chemie-International Edition 50(24):5473
Shamsaie A, Jonczyk M, Sturgis J, Robinson JP, Irudayaraj J (2007) Intracellularly grown gold nanoparticles as potential surface-enhanced Raman scattering probes. J Biomed Opt 12(2):020502
Viste P, Plain J, Jaffiol R, Vial A, Adam PM, Royer P (2010) Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources. ACS Nano 4(2):759
Vogel E, Gbureck A, Kiefer W (2000) Vibrational spectroscopic studies on the dyes cresyl violet and coumarin 152. J Mol Struct 550:177
Watanabe H, Hayazawa N, Inouye Y, Kawata S (2005) DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy. J Phys Chem B 109(11):5012
Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297
Yang Y, Matsubara S, Xiong L, Hayakawa T, Nogami M (2007) Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J Phys Chem C 111(26):9095
Author information
Authors and Affiliations
Corresponding author
Additional information
Special Issue Editors: Juan Manuel Rojo, Vasileios Koutsos
This article is part of the topical collection on Nanostructured Materials 2012
Ritun Chakraborty and Anisha Gopalakrishnan contributed equally to the study.
Electronic supplementary material
Below is the link to the electronic supplementary material.
11051_2013_1596_MOESM1_ESM.pdf
Supporting Information. Details on the analysis of the Au nanoparticle density of the Au–CdSe NW substrates, the calculation of the SERS enhancement factor, the morphology of the flat Au substrates, additional PL and Raman maps of the Au-decorated NWs, and additional SERS spectra recorded from CV functionalized Au-CdSe NWs are given in the supplementary information (PDF 2741 kb)
Rights and permissions
About this article
Cite this article
Das, G., Chakraborty, R., Gopalakrishnan, A. et al. A new route to produce efficient surface-enhanced Raman spectroscopy substrates: gold-decorated CdSe nanowires. J Nanopart Res 15, 1596 (2013). https://doi.org/10.1007/s11051-013-1596-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11051-013-1596-3