Skip to main content
Log in

Optical properties of palladium nanoparticles under exposure of hydrogen and inert gas prepared by dewetting synthesis of thin-sputtered layers

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Thin layers of palladium with a thickness of 5 nm were sputtered on fused silica substrates. Subsequently, the coated glasses were annealed at a temperature of 900 °C for 1 h. This resulted in the formation of small and well-separated palladium nanoparticles with diameters in the range from 20 to 200 nm on the glass surface. The existence of a palladium oxide layer can be detected using optical absorption spectroscopy. Purging with hydrogen leads to an irreversible change in the optical spectra due to the reduction of PdO to metallic palladium. Changing the gas atmosphere from hydrogen to argon leads to significant reversible changes in the optical properties of the particle layer. Based on Mie theory and the respective dielectric functions, the spectra were calculated using the real particle size distribution, weighted dispersions relation to adapt the geometrical conditions and complex dielectric functions of palladium and palladium hydride. A good agreement with measured spectra was found and the dependency of the surrounding media can be explained.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aiken JD, Finke RG (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J Mol Catal A 145(1–2):1–44

    CAS  Google Scholar 

  • Bayer G, Wiedemann H (1975) Formation, dissociation and expansion behavior of platinum group metal oxides (PdO, RuO2, IrO2). Thermochim Acta 11(1):79–88

    Article  CAS  Google Scholar 

  • Bérubé V, Radtke G, Dresselhaus M, Chen G (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res 31(6–7):637–663

    Article  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Cookson J (2012) The preparation of palladium nanoparticles. Platinum Met Rev 56(2):83–98

    Article  Google Scholar 

  • Creighton JA, Eadon DG (1991) Ultraviolet-visible absorption spectra of the colloidal metallic elements. J Chem Soc Faraday T 87(24):3881

    Article  CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  Google Scholar 

  • Edwards JK, Solsona B, Ntainjua EN, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2009) Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323(5917):1037–1041

    Article  CAS  Google Scholar 

  • Flanagan TB, Oates WA (1991) The palladium-hydrogen system. Annu Rev Mater Sci 21(1):269–304

    Article  CAS  Google Scholar 

  • Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48(1):1–29

    Article  CAS  Google Scholar 

  • Hakamada M, Nakano H, Furukawa T, Takahashi M, Mabuchi M (2010) Hydrogen storage properties of nanoporous palladium fabricated by dealloying. J Phys Chem C 114(2):868–873

    Article  CAS  Google Scholar 

  • Haynes WM, Lide DR (2010) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  • Hwang CB, Fu YS, Lu YL, Jang SW, Chou PT, Wang CRC, Yu SJ (2000) Synthesis, characterization, and highly efficient catalytic reactivity of suspended palladium nanoparticles. J Catal 195(2):336–341

    Article  CAS  Google Scholar 

  • Katzer C, Grosse V, Schmidl F, Michalowski P, Schmidl G, Mueller R, Dellith J, Schmidt C, Jatschka J, Fritzsche W (2012) YBa2Cu3O7-delta matrix-induced in situ growth of plasmonic Au nanoparticles for biological sensor devices. J Nanopart Res 14(12):1285

    Article  Google Scholar 

  • Ke X, Kramer GJ, Løvvik OM (2004) The influence of electronic structure on hydrogen absorption in palladium alloys. J Phys Condens Matter 16(34):6267–6277

    Article  CAS  Google Scholar 

  • Kirchheim R (1988) Hydrogen solubility and diffusivity in defective and amorphous metals. Prog Mater Sci 32(4):261–325

    Article  CAS  Google Scholar 

  • Kirchheim R, Mütschele T, Kieninger W, Gleiter H, Birringer R, Koblé T (1988) Hydrogen in amorphous and nanocrystalline metals. Mater Sci Eng 99(1–2):457–462

    CAS  Google Scholar 

  • Kishore S, Nelson JA, Adair JH, Eklund PC (2005) Hydrogen storage in spherical and platelet palladium nanoparticles. J Alloy Compd 389(1–2):234–242

    Article  CAS  Google Scholar 

  • Langhammer C, Kasemo B, Zorić I (2007a) Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. J Chem Phys 126(19):194702

    Article  Google Scholar 

  • Langhammer C, Zorić I, Kasemo B, Clemens BM (2007b) Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme. Nano Lett 7(10):3122–3127

    Article  CAS  Google Scholar 

  • Langhammer C, Larsson EM, Kasemo B, Zorić I (2010a) Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry. Nano Lett 10(9):3529–3538

    Article  CAS  Google Scholar 

  • Langhammer C, Zhdanov VP, Zorić I, Kasemo B (2010b) Size-dependent hysteresis in the formation and decomposition of hydride in metal nanoparticles. Chem Phys Lett 488(1–3):62–66

    Article  CAS  Google Scholar 

  • Langhammer C, Zhdanov VP, Zorić I, Kasemo B (2010c) Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles. Phys Rev Lett 104(13):135502

    Article  Google Scholar 

  • Laven P (2003) Simulation of rainbows, coronas, and glories by use of Mie theory. Appl Opt 42(3):436

    Article  Google Scholar 

  • Lin CM, Hung TL, Huang YH, Wu KT, Tang MT, Lee CH, Chen CT, Chen YY (2007) Size-dependent lattice structure of palladium studied by X-ray absorption spectroscopy. Phys Rev B 75(12):125426

    Google Scholar 

  • Maltsion IH (1965) Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 55(10):1205

    Article  Google Scholar 

  • Manchester FD, San-Martin A, Pitre JM (1994) The H–Pd (hydrogen–palladium) system. J Phase Equilibria 15(1):62–83

    Article  CAS  Google Scholar 

  • Mekasuwandumrong O, Somboonthanakij S, Praserthdam P, Panpranot J (2009) Preparation of nano-Pd/SiO2 by one-step flame spray pyrolysis and its hydrogenation activities: comparison to the conventional impregnation method. Ind Eng Chem Res 48(6):2819–2825

    Article  CAS  Google Scholar 

  • Mie G (1908) Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann Phys Berlin 330(3):377–445

    Article  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800

    Article  CAS  Google Scholar 

  • Mütschele T, Kirchheim R (1987) Segregation and diffusion of hydrogen in grain boundaries of palladium. Scripta Metall 21(2):135–140

    Article  Google Scholar 

  • Poyli MA, Silkin VM, Chernov IP, Echenique PM, Muiño RD, Aizpurua J (2012) Multiscale theoretical modeling of plasmonic sensing of hydrogen uptake in palladium nanodisks. J Phys Chem Lett 3(18):2556–2561

    Article  CAS  Google Scholar 

  • Pundt A (2005) Nanoskalige Metall–Wasserstoff–Systeme. Universitätsverlag Göttingen, Göttingen

    Google Scholar 

  • Quinten M (2011) Optical properties of nanoparticle systems. Wiley-VCH-Verlag, Weinheim

    Book  Google Scholar 

  • Ruban A, Hammer B, Stoltze P, Skriver HL, Nørskov JK (1997) Surface electronic structure and reactivity of transition and noble metals. J Mol Catal A 115(3):421–429

    Article  CAS  Google Scholar 

  • Sadeghi I, Munoz A, Laven P, Jarosz W, Seron F, Gutierrez D, Jensen HW (2012) Physically-based simulation of rainbows. ACM T Graphic 31(1):1–12

    Article  Google Scholar 

  • Sandu T (2012a) Shape effects on localized surface plasmon resonances in metallic nanoparticles. J Nanopart Res 14(6):905

    Article  CAS  Google Scholar 

  • Sandu T (2012b) Eigenmode decomposition of the near-field enhancement in localized surface plasmon resonances of metallic nanoparticles. Plasmonics. doi:10.1007/s11468-012-9403-z

  • Schauermann S, Hoffmann J, Johánek V, Hartmann J, Libuda J, Freund HJ (2002) Catalytic activity and poisoning of specific sites on supported metal nanoparticles. Angew Chem Int Edit 41(14):2532–2535

    Article  CAS  Google Scholar 

  • Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem 1(1):18–52

    Article  CAS  Google Scholar 

  • Silkin VM, Díez Muiño R, Chernov IP, Chulkov EV, Echenique PM (2012) Tuning the plasmon energy of palladium–hydrogen systems by varying the hydrogen concentration. J Phys Condens Matter 24(10):104021

    Article  CAS  Google Scholar 

  • Stevens KJ, Ingham B, Toney MF, Brown SA, Lassesson A (2008) Structure of palladium nanoclusters for hydrogen gas sensors. Curr Appl Phys 8(3–4):443–446

    Article  Google Scholar 

  • Teranishi T, Miyake M (1998) Size control of palladium nanoparticles and their crystal structures. Chem Mater 10(2):594–600

    Article  CAS  Google Scholar 

  • Tittl A, Kremers C, Dorfmueller J, Chigrin DN, Giessen H (2012) Spectral shifts in optical nanoantenna-enhanced hydrogen sensors. Opt Mater Express 2(2):111–118

    Article  CAS  Google Scholar 

  • Vargas WE, Rojas I, Azofeifa DE, Clark N (2006) Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements. Thin Solid Films 496(2):189–196

    Article  CAS  Google Scholar 

  • Wang W, Yang Q, Zhou R, Fu HY, Li RX, Chen H, Li XJ (2012) Palladium nanoparticles generated from allylpalladium chloride in situ: a simple and highly efficient catalytic system for Mizoroki-Heck reactions. J Organomet Chem 697(1):1–5

    Article  CAS  Google Scholar 

  • Weaver JH, Benbow RL (1975) Low-energy interband absorption in Pd. Phys Rev B 12(8):3509–3510

    Article  CAS  Google Scholar 

  • Worsch C, Kracker M, Wisniewski W, Rüssel C (2012a) Optical properties of self assembled oriented island evolution of ultra-thin gold layers. Thin Solid Films 520(15):4941–4946

    Article  CAS  Google Scholar 

  • Worsch C, Wisniewski W, Kracker M, Rüssel C (2012b) Gold nano-particles fixed on glass. Appl Surf Sci 258(22):8506–8513

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the DFG “Deutsche Forschungsgemeinschaft” under Grant. Nos.: Se 698/10-1 and Se 698/10-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kracker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kracker, M., Worsch, C. & Rüssel, C. Optical properties of palladium nanoparticles under exposure of hydrogen and inert gas prepared by dewetting synthesis of thin-sputtered layers. J Nanopart Res 15, 1594 (2013). https://doi.org/10.1007/s11051-013-1594-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1594-5

Keywords

Navigation