Skip to main content
Log in

Structure and dynamics of poly(methyl methacrylate)/graphene systems through atomistic molecular dynamics simulations

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The main goal of the present work is to examine the effect of graphene layers on the structural and dynamical properties of polymer systems. We study hybrid poly(methyl methacrylate) (PMMA)/graphene interfacial systems, through detailed atomistic molecular dynamics simulations. In order to characterize the interface, various properties related to density, structure and dynamics of polymer chains are calculated, as a function of the distance from the substrate. A series of different hybrid systems, with width ranging between 2.60 and 13.35 nm, are being modeled. In addition, we compare the properties of the macromolecular chains to the properties of the corresponding bulk system at the same temperature. We observe a strong effect of graphene layers on both structure and dynamics of the PMMA chains. Furthermore, the PMMA/graphene interface is characterized by different length scales, depending on the actual property we probe: density of PMMA polymer chains is larger than the bulk value, for polymer chains close to graphene layers up to distances of about 1.0–1.5 nm. Chain conformations are perturbed for distances up to about 2–3 radius of gyration from graphene. Segmental dynamics of PMMA is much slower close to the solid layers up to about 2–3 nm. Finally, terminal-chain dynamics is slower, compared to the bulk one, up to distances of about 5–7 radius of gyration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anastasiadis SH, Karatasos K, Vlachos G, Manias E, Giannelis EP (2000) Nanoscopic confinement effects on local dynamics. Phys Rev Lett 84:915–918

    Article  CAS  Google Scholar 

  • Awasthi AP, Lagoudas DC, Hammerand DC (2009) Modeling of graphene–polymer interfacial mechanical behavior using molecular dynamics. Model Simul Mater Sci Eng 17:015002-1–015002-37

    Article  Google Scholar 

  • Berendsen H, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  • Bitsanis IA, Hatziioannou G (1990) Molecular dynamics simulations of the structure and dynamics of confined polymer melts. J Chem Phys 92:3827–3847

    Article  CAS  Google Scholar 

  • Bussi G, Donadio D, Parinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101-1–014101-7

    Article  Google Scholar 

  • Catro-Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–155

    Article  Google Scholar 

  • Chremos A, Glynos E, Koutsos V, Camp PJ (2009) Adsorption and self-assembly of linear polymers on surfaces: a computer simulation study. Soft Matter 5:637–645

    Article  CAS  Google Scholar 

  • Chrissopoulou K, Andrikopoulos KS, Fotiadou S, Bollas S, Karageorgaki C, Christofilos D, Voyiatzis GA, Anastasiadis SH (2011) Crystallinity and chain conformation in PEO/layered silicate nanocomposites. Macromolecules 44:9710–9722

    Article  CAS  Google Scholar 

  • Daoulas KC, Harmandaris VA, Mavrantzas VG (2005) Detailed atomistic simulation of a polymer melt/solid interface: structure, density and conformation of a thin film of polyethylene melt adsorbed on graphite. Macromolecules 38:5780–5795

    Article  CAS  Google Scholar 

  • Das B, Prasad KE, Ramamutry U, Rao CNR (2009) Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 20(12):125705–125709

    Article  Google Scholar 

  • Dreyer DR, Park SJ, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  • Fang M, Wang KG, Lu HB, Yang YL, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19(38):7098–7105

    Article  CAS  Google Scholar 

  • Fleer GJ, Stuart MAC, Scheutjens JMHM, Cosgrove T, Vincent B (1993) Polymers at interfaces. Chapman & Hall, London

    Google Scholar 

  • Fotiadou S, Chrissopoulou K, Frick B, Anastasiadis SH (2010) Structure and dynamics of polymer chains in hydrophilic nanocomposites. J Polym Sci B 48:1658–1667

    Article  CAS  Google Scholar 

  • Frank B, Cast AP, Russel TP, Brown HR, Hawker C (1996) Polymer mobility in thin films. Macromolecules 29:6531–6534

    Article  CAS  Google Scholar 

  • Frank O, Tsoukleri G, Parthenios J, Papagelis K, Riaz I, Jalil R, Novoselov KS, Galiotis C (2010) Compression behavior of single-layer graphenes. ACS Nano 4(6):3131–3138

    Article  CAS  Google Scholar 

  • Harmandaris V, Baig C (2010) Quantitative analysis on the validity of a coarse-grained model for nonequilibrium polymeric liquids under flow. Macromolecules 43:3156–3160

    Article  Google Scholar 

  • Harmandaris VA, Daoulas KC, Mavrantzas VG (2005) Molecular dynamics simulation of a polymer melt/solid interface: local dynamics and chain mobility in a thin film of polyethylene melt adsorbed on graphite. Macromolecules 38:5796–5809

    Google Scholar 

  • Harmandaris V, Kremer K (2009a) Dynamics of polystyrene melts through hierarchical multiscale simulations. Macromolecules 42:791–802

    Article  CAS  Google Scholar 

  • Harmandaris V, Kremer K (2009b) Predicting polymer dynamics at multiple length and time scales. Soft Matter 5:3920–3926

    Article  CAS  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  • Johnson K, Harmandaris V (2011) Properties of benzene confined between two Au(111) surfaces using a combined density functional theory and classical molecular dynamics approach. J Phys Chem C 115:14707–14717

    Article  Google Scholar 

  • Johnson K, Harmandaris V (2012) Properties of short polystyrene chains confined between two gold surfaces through a combined density functional theory and classical molecular dynamics approach. Soft Matter 8:6320–6332

    Article  Google Scholar 

  • Jones RAL, Richards RW (1999) Polymers at surfaces and interface. Cambridge University Press, Cambridge

    Google Scholar 

  • Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  • Källrot N, Linse P (2007) Dynamic study of single-chain adsorption and desorption. Macromolecules 40:4669–4679

    Article  Google Scholar 

  • Karaiskos E, Bitsanis IA, Anastasiadis SH (2009) Monte Carlo studies of tethered chains. J Polym Sci B 47:2449–2461

    Article  CAS  Google Scholar 

  • Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  • Koo J (2006) Polymer nanocomposites: processing, characterization, and applications. McGraw-Hill, New York

    Google Scholar 

  • Kotelyanskii M, Theodorou DN (2004) Simulation methods for polymers. Marcel Dekker Inc., New York

    Google Scholar 

  • Lin E, Wu W, Satija S (1997) Polymer interdiffusion near an attractive solid substrate. Macromolecules 30:7224–7231

    Article  CAS  Google Scholar 

  • Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  • Lv C, Xue Q, Xia D, Ma M, Xie J, Chen H (2010) Effect of chemisorption on the interfacial bonding characteristics of graphene–polymer composites. J Phys Chem 114:6588–6594

    CAS  Google Scholar 

  • Mansfield KF, Theodorou DN (1989) Interfacial structure and dynamics of macromolecular liquids: a Monte Carlo simulation approach. Macromolecules 22:3143–3152

    Article  CAS  Google Scholar 

  • Mansfield KF, Theodorou DN (1991) Atomistic simulation of a glassy polymer/graphite interface. Macromolecules 24:4295–4309

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jing D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  • Park SJ, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  • Pozzo M, Alfè D, Lacovig P, Hofmann P, Lizzit S, Baraldi A (2011) Thermal expansion of supported and freestanding graphene: lattice constant versus interatomic distance. Phys Rev Lett 106:135501–135504

    Article  Google Scholar 

  • Price ML, Ostrovsky D, Jorgensen WL (2001) Gas-phase and liquid-state properties of esters, nitriles, and nitro compounds with the OPLS-AA force field. J Comput Chem 22:1340–1352

    Article  CAS  Google Scholar 

  • Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  CAS  Google Scholar 

  • Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009a) Graphene the new nanocarbon. J Mater Chem 19(17):2457–2469

    Article  CAS  Google Scholar 

  • Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009b) Graphene: the new two- dimensional nanomaterial. Angew Chem Int Ed 48(42):7752–7777

    Article  CAS  Google Scholar 

  • Rissanou AN, Anastasiadis SH, Bitsanis IA (2009) A Monte Carlo study of the coil-to-globule transition of model polymer chains near an attractive surface. J Polym Sci B 47:2462–2476

    Article  CAS  Google Scholar 

  • Rivilon S, Auroy P, Deloche B (2000) Chain segment order in polymer thin films on a nonadsorbing surface: a NMR study. Phys Rev Lett 84:499–502

    Article  Google Scholar 

  • Steele WA (1973) The physical interaction of gases with crystalline solids. Surf Sci 36:317–352

    Article  CAS  Google Scholar 

  • Stitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  Google Scholar 

  • Tatek YB, Tsige M (2011) Structural properties of atactic polystyrene adsorbed onto solid surfaces. J Chem Phys 135:174708-1–174708-11

    Article  Google Scholar 

  • Tsoukleri G, Parthenios J, Papagelis K, Jalil R, Ferrari AC, Geim AK, Novoselov KS, Galiotis C (2009) Subjecting a graphene monolayer to tension and compression. Small 5:2397–2402

    Article  CAS  Google Scholar 

  • Turzi SS (2011) On the Cartesian definition of orientational order parameters. J Math Phys 52:053517-1–053517-29

    Article  Google Scholar 

  • Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66:80–85

    Article  CAS  Google Scholar 

  • Wunderlich W (1989) Physical constants for poly(methyl methacrylate). In: Brandrup J, Immergut EH (eds) Polymer handbook, 3rd edn. Wiley, New York, p 77

    Google Scholar 

  • Yang J-S, Yang C-L, Wang M-S, Chen B-D, Ma X-G (2011) Crystallization of alkane melts induced by carbon nanotubes and graphene nanosheets: a molecular dynamics simulation study. Phys Chem Chem Phys 13:15476–15482

    Article  CAS  Google Scholar 

  • Young RJ, Gong L, Kinloch IA, Riaz I, Jalil R, Novoselov KS (2011) Strain mapping in a graphene monolayer nanocomposite. ACS Nano 5:3079–3084

    Article  CAS  Google Scholar 

  • Zhao QZ, Nardelli MB, Bernholc J (2002) Ultimate strength of carbon nanotubes: a theoretical study. Phys Rev B 65:144105–144111

    Article  Google Scholar 

  • Zheng X, Rafailovich MH, Sokolov J, Strzhemechny Y, Schwarz SA, Sauer BB, Rubinstein M (1997) Long-range effects on polymer diffusion induced by a bounding interface. Phys Rev Lett 79:241–244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Costas Galiotis, Spiros Anastasiadis, as well as, Kostas Papagelis, Giorgos Kalosakas, George Konstantinidis, and George Deligeorgis for valuable discussions. Funding was provided by the Graphene Research Center. Partially supported by the European Union’s Seventh Framework Programme (FP7-REGPOT-2009-1) Project ‘‘Archimedes Center for Modeling, Analysis and Computation’’ under Grant Agreement 245749.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anastassia N. Rissanou or Vagelis Harmandaris.

Additional information

Special Issue Editors: Juan Manuel Rojo, Vasileios Koutsos

This article is part of the topical collection on Nanostructured Materials 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rissanou, A.N., Harmandaris, V. Structure and dynamics of poly(methyl methacrylate)/graphene systems through atomistic molecular dynamics simulations. J Nanopart Res 15, 1589 (2013). https://doi.org/10.1007/s11051-013-1589-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1589-2

Keywords

Navigation