Structure and dynamics of poly(methyl methacrylate)/graphene systems through atomistic molecular dynamics simulations

Research Paper
Part of the following topical collections:
  1. Nanostructured Materials 2012. Special Issue Editors: Juan Manuel Rojo, Vasileios Koutsos

Abstract

The main goal of the present work is to examine the effect of graphene layers on the structural and dynamical properties of polymer systems. We study hybrid poly(methyl methacrylate) (PMMA)/graphene interfacial systems, through detailed atomistic molecular dynamics simulations. In order to characterize the interface, various properties related to density, structure and dynamics of polymer chains are calculated, as a function of the distance from the substrate. A series of different hybrid systems, with width ranging between 2.60 and 13.35 nm, are being modeled. In addition, we compare the properties of the macromolecular chains to the properties of the corresponding bulk system at the same temperature. We observe a strong effect of graphene layers on both structure and dynamics of the PMMA chains. Furthermore, the PMMA/graphene interface is characterized by different length scales, depending on the actual property we probe: density of PMMA polymer chains is larger than the bulk value, for polymer chains close to graphene layers up to distances of about 1.0–1.5 nm. Chain conformations are perturbed for distances up to about 2–3 radius of gyration from graphene. Segmental dynamics of PMMA is much slower close to the solid layers up to about 2–3 nm. Finally, terminal-chain dynamics is slower, compared to the bulk one, up to distances of about 5–7 radius of gyration.

Keywords

Graphene nanocomposites Polymer Simulations Structure Dynamics 

References

  1. Anastasiadis SH, Karatasos K, Vlachos G, Manias E, Giannelis EP (2000) Nanoscopic confinement effects on local dynamics. Phys Rev Lett 84:915–918CrossRefGoogle Scholar
  2. Awasthi AP, Lagoudas DC, Hammerand DC (2009) Modeling of graphene–polymer interfacial mechanical behavior using molecular dynamics. Model Simul Mater Sci Eng 17:015002-1–015002-37CrossRefGoogle Scholar
  3. Berendsen H, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56CrossRefGoogle Scholar
  4. Bitsanis IA, Hatziioannou G (1990) Molecular dynamics simulations of the structure and dynamics of confined polymer melts. J Chem Phys 92:3827–3847CrossRefGoogle Scholar
  5. Bussi G, Donadio D, Parinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101-1–014101-7CrossRefGoogle Scholar
  6. Catro-Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–155CrossRefGoogle Scholar
  7. Chremos A, Glynos E, Koutsos V, Camp PJ (2009) Adsorption and self-assembly of linear polymers on surfaces: a computer simulation study. Soft Matter 5:637–645CrossRefGoogle Scholar
  8. Chrissopoulou K, Andrikopoulos KS, Fotiadou S, Bollas S, Karageorgaki C, Christofilos D, Voyiatzis GA, Anastasiadis SH (2011) Crystallinity and chain conformation in PEO/layered silicate nanocomposites. Macromolecules 44:9710–9722CrossRefGoogle Scholar
  9. Daoulas KC, Harmandaris VA, Mavrantzas VG (2005) Detailed atomistic simulation of a polymer melt/solid interface: structure, density and conformation of a thin film of polyethylene melt adsorbed on graphite. Macromolecules 38:5780–5795CrossRefGoogle Scholar
  10. Das B, Prasad KE, Ramamutry U, Rao CNR (2009) Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 20(12):125705–125709CrossRefGoogle Scholar
  11. Dreyer DR, Park SJ, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRefGoogle Scholar
  12. Fang M, Wang KG, Lu HB, Yang YL, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19(38):7098–7105CrossRefGoogle Scholar
  13. Fleer GJ, Stuart MAC, Scheutjens JMHM, Cosgrove T, Vincent B (1993) Polymers at interfaces. Chapman & Hall, LondonGoogle Scholar
  14. Fotiadou S, Chrissopoulou K, Frick B, Anastasiadis SH (2010) Structure and dynamics of polymer chains in hydrophilic nanocomposites. J Polym Sci B 48:1658–1667CrossRefGoogle Scholar
  15. Frank B, Cast AP, Russel TP, Brown HR, Hawker C (1996) Polymer mobility in thin films. Macromolecules 29:6531–6534CrossRefGoogle Scholar
  16. Frank O, Tsoukleri G, Parthenios J, Papagelis K, Riaz I, Jalil R, Novoselov KS, Galiotis C (2010) Compression behavior of single-layer graphenes. ACS Nano 4(6):3131–3138CrossRefGoogle Scholar
  17. Harmandaris V, Baig C (2010) Quantitative analysis on the validity of a coarse-grained model for nonequilibrium polymeric liquids under flow. Macromolecules 43:3156–3160CrossRefGoogle Scholar
  18. Harmandaris VA, Daoulas KC, Mavrantzas VG (2005) Molecular dynamics simulation of a polymer melt/solid interface: local dynamics and chain mobility in a thin film of polyethylene melt adsorbed on graphite. Macromolecules 38:5796–5809Google Scholar
  19. Harmandaris V, Kremer K (2009a) Dynamics of polystyrene melts through hierarchical multiscale simulations. Macromolecules 42:791–802CrossRefGoogle Scholar
  20. Harmandaris V, Kremer K (2009b) Predicting polymer dynamics at multiple length and time scales. Soft Matter 5:3920–3926CrossRefGoogle Scholar
  21. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  22. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefGoogle Scholar
  23. Johnson K, Harmandaris V (2011) Properties of benzene confined between two Au(111) surfaces using a combined density functional theory and classical molecular dynamics approach. J Phys Chem C 115:14707–14717CrossRefGoogle Scholar
  24. Johnson K, Harmandaris V (2012) Properties of short polystyrene chains confined between two gold surfaces through a combined density functional theory and classical molecular dynamics approach. Soft Matter 8:6320–6332CrossRefGoogle Scholar
  25. Jones RAL, Richards RW (1999) Polymers at surfaces and interface. Cambridge University Press, CambridgeGoogle Scholar
  26. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236CrossRefGoogle Scholar
  27. Källrot N, Linse P (2007) Dynamic study of single-chain adsorption and desorption. Macromolecules 40:4669–4679CrossRefGoogle Scholar
  28. Karaiskos E, Bitsanis IA, Anastasiadis SH (2009) Monte Carlo studies of tethered chains. J Polym Sci B 47:2449–2461CrossRefGoogle Scholar
  29. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRefGoogle Scholar
  30. Koo J (2006) Polymer nanocomposites: processing, characterization, and applications. McGraw-Hill, New YorkGoogle Scholar
  31. Kotelyanskii M, Theodorou DN (2004) Simulation methods for polymers. Marcel Dekker Inc., New YorkGoogle Scholar
  32. Lin E, Wu W, Satija S (1997) Polymer interdiffusion near an attractive solid substrate. Macromolecules 30:7224–7231CrossRefGoogle Scholar
  33. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317Google Scholar
  34. Lv C, Xue Q, Xia D, Ma M, Xie J, Chen H (2010) Effect of chemisorption on the interfacial bonding characteristics of graphene–polymer composites. J Phys Chem 114:6588–6594Google Scholar
  35. Mansfield KF, Theodorou DN (1989) Interfacial structure and dynamics of macromolecular liquids: a Monte Carlo simulation approach. Macromolecules 22:3143–3152CrossRefGoogle Scholar
  36. Mansfield KF, Theodorou DN (1991) Atomistic simulation of a glassy polymer/graphite interface. Macromolecules 24:4295–4309CrossRefGoogle Scholar
  37. Novoselov KS, Geim AK, Morozov SV, Jing D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  38. Park SJ, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRefGoogle Scholar
  39. Pozzo M, Alfè D, Lacovig P, Hofmann P, Lizzit S, Baraldi A (2011) Thermal expansion of supported and freestanding graphene: lattice constant versus interatomic distance. Phys Rev Lett 106:135501–135504CrossRefGoogle Scholar
  40. Price ML, Ostrovsky D, Jorgensen WL (2001) Gas-phase and liquid-state properties of esters, nitriles, and nitro compounds with the OPLS-AA force field. J Comput Chem 22:1340–1352CrossRefGoogle Scholar
  41. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRefGoogle Scholar
  42. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009a) Graphene the new nanocarbon. J Mater Chem 19(17):2457–2469CrossRefGoogle Scholar
  43. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009b) Graphene: the new two- dimensional nanomaterial. Angew Chem Int Ed 48(42):7752–7777CrossRefGoogle Scholar
  44. Rissanou AN, Anastasiadis SH, Bitsanis IA (2009) A Monte Carlo study of the coil-to-globule transition of model polymer chains near an attractive surface. J Polym Sci B 47:2462–2476CrossRefGoogle Scholar
  45. Rivilon S, Auroy P, Deloche B (2000) Chain segment order in polymer thin films on a nonadsorbing surface: a NMR study. Phys Rev Lett 84:499–502CrossRefGoogle Scholar
  46. Steele WA (1973) The physical interaction of gases with crystalline solids. Surf Sci 36:317–352CrossRefGoogle Scholar
  47. Stitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRefGoogle Scholar
  48. Tatek YB, Tsige M (2011) Structural properties of atactic polystyrene adsorbed onto solid surfaces. J Chem Phys 135:174708-1–174708-11CrossRefGoogle Scholar
  49. Tsoukleri G, Parthenios J, Papagelis K, Jalil R, Ferrari AC, Geim AK, Novoselov KS, Galiotis C (2009) Subjecting a graphene monolayer to tension and compression. Small 5:2397–2402CrossRefGoogle Scholar
  50. Turzi SS (2011) On the Cartesian definition of orientational order parameters. J Math Phys 52:053517-1–053517-29CrossRefGoogle Scholar
  51. Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66:80–85CrossRefGoogle Scholar
  52. Wunderlich W (1989) Physical constants for poly(methyl methacrylate). In: Brandrup J, Immergut EH (eds) Polymer handbook, 3rd edn. Wiley, New York, p 77Google Scholar
  53. Yang J-S, Yang C-L, Wang M-S, Chen B-D, Ma X-G (2011) Crystallization of alkane melts induced by carbon nanotubes and graphene nanosheets: a molecular dynamics simulation study. Phys Chem Chem Phys 13:15476–15482CrossRefGoogle Scholar
  54. Young RJ, Gong L, Kinloch IA, Riaz I, Jalil R, Novoselov KS (2011) Strain mapping in a graphene monolayer nanocomposite. ACS Nano 5:3079–3084CrossRefGoogle Scholar
  55. Zhao QZ, Nardelli MB, Bernholc J (2002) Ultimate strength of carbon nanotubes: a theoretical study. Phys Rev B 65:144105–144111CrossRefGoogle Scholar
  56. Zheng X, Rafailovich MH, Sokolov J, Strzhemechny Y, Schwarz SA, Sauer BB, Rubinstein M (1997) Long-range effects on polymer diffusion induced by a bounding interface. Phys Rev Lett 79:241–244CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of CreteHeraklion, CreteGreece
  2. 2.Institute of Applied and Computational Mathematics (IACM)Foundation for Research and Technology Hellas (FORTH)Heraklion, CreteGreece

Personalised recommendations