Skip to main content
Log in

Nickel ethylene tetrathiolate polymers as nanoparticles: a new synthesis for future applications?

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Coordination polymers (CP) based on the ethylene tetrathiolate ligand (C2S4)4− and Ni2+, and previously isolated as insoluble conductive powders are grown as nanoparticles (NP) using ionic liquid (IL) as stabilizing agent. The time of addition of the IL determines the morphology, and consequently the properties of the CP. The smaller (10–20 nm) and soluble NP are obtained when IL is present at the complexation step. The mechanism of growth of NP is studied. The NP size is sensitive to the amount of IL and to the reaction temperature. NPs are studied by TEM/EDX, DLS, liquid- and solid-state NMR, and conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

dmit:

Dimercaptoisotrithione or 1,3-dithiole-2-thione-4,5-dithiolate

mnt:

Maleonitriledithiolate or dicyano-1,2-ethylene dithiolate

tto:

Tetrathioxalate

ett:

Ethylenetetrathiolate

ttf-ett:

Tetrathiafulvalenetetrathiolate

bt:

Benzenetetrathiolate

CP:

Coordination polymers

NP:

Nanoparticles

IL:

Ionic liquid

BMIM:

1-Butyl-3-methyl imidazolium 1-decyl-3-methyl imidazolium

TPD:

1,3,4,6-Tetrathiapentalene-2,5-dione

DLS:

Dynamic light scattering

EDX:

Energy-dispersive X-ray spectroscopy

References

  • Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Commun 2010–2011

  • Arai M, Miyake M, Yamada M (2008) Metal(II) Hexacyanochromate(III) MCr (M = Co, Cu, Fe) coordination nanoparticles stabilized by alkyl surface coordination ligand: downsizing effect on their crystal structure and magnetic properties. J Phys Chem C 112:1953–1962

    Article  CAS  Google Scholar 

  • Billard I, Moutiers G, Labet A, El Azzi A, Gaillard C, Mariet C, Lützenkirchen K (2003) Stability of divalent europium in an ionic liquid: spectroscopic investigations in 1-Methyl-3-butylimidazolium Hexafluorophosphate. Inorg Chem 42:1726–1733

    Article  CAS  Google Scholar 

  • Brinzei D, Catala L, Louvain N, Rogez G, Stephan O, Gloter A, Mallah T (2006) Spontaneous stabilization and isolation of dispersible bimetallic coordination nanoparticles of CsNi[Cr(CN)6]. J Mater Chem 16:2593–2599

    Article  CAS  Google Scholar 

  • Canongia Lopes JNA, Pádua AAH (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110:3330–3335

    Article  CAS  Google Scholar 

  • Canongia Lopes JN, Costa Gomes MF, Pádua AAH (2006) Nonpolar, polar, and associating solutes in ionic liquids. J Phys Chem B 110:16816–16818

    Article  Google Scholar 

  • Carter DA, Pemberton JE, Woelfel KJ (1998) Orientation of 1- and 2-Methylimidazole on silver electrodes determined with surface-enhanced Raman Scattering. J Phys Chem B 102:9870–9880

    Article  CAS  Google Scholar 

  • Cassoux P (1999) Molecular (super) conductors derived from bis-dithiolate metal complexes. Coord Chem Rev 186:213–232

    Article  Google Scholar 

  • Cassoux P, Valade L, Kobayashi H, Kobayashi A, Clark RA, Underhill AE (1991) Molecular metals and superconductors derived from metal complexes of 1,3-dithiol-2-thione-4,5- dithiolate (dmit). Coord Chem Rev 110:115–160

    Article  CAS  Google Scholar 

  • Catala L, Mathoniere C, Gloter A, Stephan O, Gacoin T, Boilot J-P, Mallah T (2005) Photomagnetic nanorods of the Mo(CN)8Cu2 coordination network. Chem Commun 746–748

  • Catala L, Gloter A, Stephan O, Rogez G, Mallah T (2006) Superparamagnetic bimetallic cyanide-bridged coordination nanoparticles with TB = 9 K. Chem Commun 1018–1020

  • Chelebaeva E, Guari Y, Larionova J, Trifonov A, Guérin C (2008) Soluble ligand-stabilized cyano-bridged coordination polymer nanoparticles. Chem Mat 20:1367–1375

    Article  CAS  Google Scholar 

  • Clavel G, Guari Y, Larionova J, Guerin C (2005) Formation of cyano-bridged molecule-based magnetic nanoparticles within hybrid mesoporous silica. New J Chem 29:275–279

    Article  CAS  Google Scholar 

  • Clavel G, Larionova J, Guari Y, Guérin C (2006) Synthesis of cyano-bridged magnetic nanoparticles using room-temperature ionic liquids. Chem Eur J 12:3798–3804

    Article  CAS  Google Scholar 

  • Clemenson PI (1990) The chemistry and solid state properties of nickel, palladium and platinum bis(maleonitriledithiolate) compounds. Coord Chem Rev 106:171–203

    Article  CAS  Google Scholar 

  • Consorti CS, Suarez PAZ, de Souza RF, Burrow RA, Farrar DH, Lough AJ, Loh W, da Silva LHM, Dupont J (2005) Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution. J Phys Chem B 109:4341–4349

    Article  CAS  Google Scholar 

  • de Caro D, Jacob K, Faulmann C, Legros J-P, Senocq F, Fraxedas J, Valade L (2010) Ionic liquid-stabilized nanoparticles of charge transfer-based conductors. Synth Met 160:1223–1227

    Article  Google Scholar 

  • de Caro D, Jacob K, Hahioui H, Faulmann C, Valade L, Kadoya T, Mori T, Fraxedas J, Viau L (2011) Nanoparticles of organic conductors: synthesis and application as electrode material in organic field effect transistors. New J Chem 35:1315–1319

    Article  Google Scholar 

  • Delhaes P, Garrigou-Lagrange C, Dupart E, Fabre JM (1986) Electronic and vibrational absorption spectra of radical cation salts based on TTF derivatives. Mol Cryst Liq Cryst 137:151–168

    Article  CAS  Google Scholar 

  • DeLongchamp DM, Hammond PT (2004) High-contrast electrochromism and controllable dissolution of assembled prussian blue/polymer nanocomposites. Adv Funct Mater 14:224–232

    Article  CAS  Google Scholar 

  • Dirk CW, Bousseau M, Barrett PH, Moraes F, Wudl F, Heeger AJ (1986) Metal poly(benzodithiolenes). Macromolecules 19:266–269

    Article  CAS  Google Scholar 

  • Domínguez-Vera JM, Colacio E (2003) Nanoparticles of Prussian blue ferritin: a new route for obtaining nanomaterials. Inorg Chem 42:6983–6985

    Article  Google Scholar 

  • Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350

    Article  CAS  Google Scholar 

  • Dyson PJ, Geldbach TJ (2005) Metal catalysed reactions in ionic liquids in catalysis by metal complexe, vol 29. Dordrecht, The Netherlands, Springer, 246 p

  • Engler EM, Nichols KH, Patel VV, Rivera NM, Schumaker RR (1978) Highly conducting organometallic polymers, US Patent 4111857

  • Faulmann C, Cassoux P (2004) Solid state properties (electronic, magnetic, optical) of dithiolene complex-based compounds. In: Stiefel EI (ed) Dithiolene chemistry: synthesis, properties, and applications. Wiley Inc, Hoboken, pp 399–489

    Google Scholar 

  • Faulmann C, Cassoux P, Vicente R, Ribas J, Jolly CA, Reynolds JR (1989) Conductive amorphous metal-tetrathiolato polymers: synthesis of a new precursor C6O2S8 and its derived polymers and laxs structural studies. Synth Met 29:557–562

    Article  Google Scholar 

  • Folch B, Larionova J, Guari Y, Datas L, Guerin C (2006) A coordination polymer precursor approach to the synthesis of NiFe bimetallic nanoparticles within hybrid mesoporous silica. J Mater Chem 16:4435–4442

    Article  CAS  Google Scholar 

  • Folch B, Guari Y, Larionova J, Luna C, Sangregorio C, Innocenti C, Caneschi A, Guerin C (2008) Synthesis and behaviour of size controlled cyano-bridged coordination polymer nanoparticles within hybrid mesoporous silica. New J Chem 32:273–282

    Article  CAS  Google Scholar 

  • Fritzinger B, Moreels I, Lommens P, Koole R, Hens Z, Martins JC (2009) In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy. J Am Chem Soc 131:3024–3032

    Article  CAS  Google Scholar 

  • Garreau de Bonneval B, Faulmann C, Verelst M, Lecante P, Malfant I, Cassoux P (2003) Structural study and magnetic properties of new [(Cp*2M)x(NiC2S4)]n polymer salts. Synth Met 133–134:597–599

    Article  Google Scholar 

  • Guari Y, Larionova J, Molvinger K, Folch B, Guerin C (2006) Magnetic water-soluble cyano-bridged metal coordination nano-polymers. Chem Commun 2613–2615

  • Guari Y, Larionova J, Corti M, Lascialfari A, Marinone M, Poletti G, Molvinger K, Guerin C (2008) Cyano-bridged coordination polymer nanoparticles with high nuclear relaxivity: toward new contrast agents for MRI. Dalton Trans 3658–3660

  • Gutel T, Garcia-Anton J, Pelzer K, Philippot K, Santini CC, Chauvin Y, Chaudret B, Basset J-M (2007) Influence of the self-organization of ionic liquids on the size of ruthenium nanoparticles: effect of the temperature and stirring. J Mater Chem 17:3290–3292

    Article  CAS  Google Scholar 

  • Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576

    Article  CAS  Google Scholar 

  • Hanelt S, Liebscher J (2008) A novel and versatile access to task-specific ionic liquids based on 1,2,3-Triazolium Salts. Synlett 7:1058–1060

    Google Scholar 

  • Harjani JR, Singer RD, Garcia MT, Scammells PJ (2008) The design and synthesis of biodegradable pyridinium ionic liquids. Green Chem 10:436–438

    Article  CAS  Google Scholar 

  • Holbrey JD, Seddon KR (1999) Ionic liquids in clean products and processes. Springer, Berlin, pp 223–236

    Google Scholar 

  • Holdcroft GE, Underhill AE (1985) Synthesis and physical properties of transition metal tetrathiolate macromolecules. Mol Cryst Liq Cryst 118:365–369

    Article  CAS  Google Scholar 

  • Jeon Y, Sung J, Seo C, Lim H, Cheong H, Kang M, Moon B, Ouchi Y, Kim D (2008) Structures of ionic liquids with different anions studied by infrared vibration spectroscopy. J Phys Chem B 112:4735–4740

    Article  CAS  Google Scholar 

  • Larionova J, Guari Y, Sayegh H, Guérin C (2007) Synthesis of soluble coordination polymer nanoparticles using room-temperature ionic liquid. Inorg Chim Acta 360:3829–3836

    Article  CAS  Google Scholar 

  • Larionova J, Guari Y, Blanc C, Dieudonné P, Tokarev A, Guérin C (2008a) Toward organization of cyano-bridged coordination polymer nanoparticles within an ionic liquid crystal. Langmuir 25:1138–1147

    Article  Google Scholar 

  • Larionova J, Guari Y, Tokarev A, Chelebaeva E, Luna C, Sangregorio C, Caneschi A, Guérin C (2008b) Coordination polymer nano-objects into ionic liquids: nanoparticles and superstructures. Inorg Chim Acta 361:3988–3996

    Article  CAS  Google Scholar 

  • MacFarlane DR, Golding J, Forsyth S, Forsyth M, Deacon GB (2001) Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem Commun 1430–1431

  • Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76

    Article  CAS  Google Scholar 

  • Matsubayashi G-E (1996) Structures and properties of bulky metal complexes with the sulfur-rich dithiolato ligand, C3S 2-5 , and the selenium analog, C3Se 2-5 , as electrical conductors. Trends Inorg Chem 4:79–92

    CAS  Google Scholar 

  • Matsumoto H, Kageyama H, Miyazaki Y (2002) Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions. Chem Commun 1726–1727

  • Mirzaei YR, Twamley B, Shreeve JM (2002) Syntheses of 1-Alkyl-1,2,4-triazoles and the formation of quaternary 1-Alkyl-4-polyfluoroalkyl-1,2,4-triazolium salts leading to ionic liquids. J Org Chem 67:9340–9345

    Article  CAS  Google Scholar 

  • Mohammad A, Inamuddin D (2012) Green solvents II: properties and applications of ionic liquids. Springer, Netherlands, p 506

    Google Scholar 

  • Moore JG, Lochner EJ, Ramsey C, Dalal NS, Stiegman AE (2003) Transparent, superparamagnetic KIxCoIIy [FeIII(CN)6] silica nanocomposites with tunable photomagnetism. Angew Chem Int Ed 42:2741–2743

    Article  CAS  Google Scholar 

  • Nalwa HS (1990) Electrically conducting organometallic polymers. Appl Organomet Chem 4:91–102

    Article  CAS  Google Scholar 

  • Olk RM, Olk B, Dietzsch W, Kirmse R, Hoyer E (1992) The chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (dmit). Coord Chem Rev 117:99–131

    Article  CAS  Google Scholar 

  • Ott LS, Cline ML, Deetlefs M, Seddon KR, Finke RG (2005) Nanoclusters in ionic liquids: evidence for N-heterocyclic carbene formation from imidazolium-based ionic liquids detected by 2H NMR. J Am Chem Soc 127:5758–5759

    Article  CAS  Google Scholar 

  • Patrascu C, Sugisaki C, Mingotaud C, Marty JD, Genisson Y (2004) Lauth de Viguerie N. Heterocycles 63:2033–2041

    Article  CAS  Google Scholar 

  • Piotraschke J, Pullen AE, Abboud KA, Reynolds JR (1995) Extensively conjugated bimetallic (μ-Tetrathiooxalato)copper(II) complex (Bu4N)2[(C3S5)CuC2S4Cu(C3S5)] for electrically conducting charge transfer complexes. Inorg Chem 34:4011–4012

    Article  CAS  Google Scholar 

  • Pokhodnya KI, Faulmann C, Malfant I, Andreu-Solano R, Cassoux P, Mlayah A, Smirnov D, Leotin J (1999) Infrared and Raman properties of [M(dmit)2] (M = Ni, Pd) based compounds. Synth Met 103:2016–2019

    Article  CAS  Google Scholar 

  • Poleschner H, John W, Kempe G, Hoyer E (1978) Tetrathiafulvalenes. New tetrathiafulvalene-dithiole-metal complex polymers with electroconducting properties. Zeitschrift fuer Chemie 18:345–346

    Article  CAS  Google Scholar 

  • Poleschner H, John W, Hoppe F, Fanghaenel E, Roth S (1983) Tetrathiafulvalenes. XIX. Synthesis and properties of electron conducting poly(dithiolene) complexes with ethylenetetrathiolate and tetrathiafulvalenetetrathiolate as bridge ligands. J Prakt Chem 325:957–975

    Article  CAS  Google Scholar 

  • Pullen AE, Olk R-M (1999) The coordination chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (dmit) and isologs. Coord Chem Rev 188:211–262

    Article  CAS  Google Scholar 

  • Pullen AE, Zeltner S, Olk R-M, Hoyer E, Abboud KA, Reynolds JR (1996) Extensively conjugated dianionic tetrathiooxalate-bridged copper(II) complexes for synthetic metals. Inorg Chem 35:4420–4426

    Article  CAS  Google Scholar 

  • Pullen AE, Olk R-M, Zeltner S, Hoyer E, Abboud KA, Reynolds JR (1997a) A new generation of nickel-dmit-based molecular conductors based on fully conjugated bimetallic complexes. Inorg Chem 36:958–959

    Article  CAS  Google Scholar 

  • Pullen AE, Zeltner S, Olk R-M, Hoyer E, Abboud KA, Reynolds JR (1997b) Electrically conducting materials based on μ-tetrathiooxalato-bridged bimetallic Ni(II) anionic complexes. Inorg Chem 36:4163–4171

    Article  CAS  Google Scholar 

  • Ribas J, Cassoux P (1981) Essential role of oxidation in the synthesis of tetrathiafulvalene-nickel bis (dithiolene) polymers with high conductivity. C R Acad Sci Ser 2(293):665–670

    Google Scholar 

  • Rivera NM, Engler EM, Schumaker RR (1979) Synthesis and properties of tetrathiafulvalene-metal bisdithiolene macromolecules. J Chem Soc Chem Commun 184–185

  • Schroder U, Wadhawan JD, Compton RG, Marken F, Suarez PAZ, Consorti CS, de Souza RF, Dupont J (2000) Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids. New J Chem 24:1009–1015

    Article  CAS  Google Scholar 

  • Schumaker RR, Engler EM (1977) Thiapen chemistry. 2. Synthesis of 1,3,4,6-tetrathiapentalene-2,5-dione. J Am Chem Soc 99:5521–5522

    Article  CAS  Google Scholar 

  • Shaw DJ (1992) Introduction to colloid and surface chemistry (colloid and surface engineering). 4th edn, Oxford Butterworth-Heinemann

  • Steimecke G, Sieler HJ, Kirmse R, Hoyer E (1979) 1,3-Dithiole-2-thione-4,5-dithiolate from carbon disulfide and alkali metal. Phosphorus Sulfur 7:49–55

    CAS  Google Scholar 

  • Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D, Zhu D (2012) Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv Mater 24:932–937

    Article  CAS  Google Scholar 

  • Tait S, Osteryoung RA (1984) Infrared study of ambient-temperature chloroaluminates as a function of melt acidity. Inorg Chem 23:4352–4360

    Article  CAS  Google Scholar 

  • Talaty ER, Raja S, Storhaug VJ, Dölle A, Carper WR (2004) Raman and infrared spectra and ab Initio calculations of C2–4MIM imidazolium hexafluorophosphate ionic liquids. J Phys Chem B 108:13177–13184

    Article  CAS  Google Scholar 

  • Tang Y, Gan X, Tan M (1999) Preparation and properties of conductive amorphous mercury tetrathiolato polymers. Indian J Chem, Sect A: Inorg, Bio-inorg, Phys, Theor Anal Chem 38A:587–589

    CAS  Google Scholar 

  • Tsunashima K, Yonekawa F, Sugiya M (2008) A lithium battery electrolyte based on a room-temperature phosphonium ionic liquid. Chem Lett 37:314–315

    Article  CAS  Google Scholar 

  • Uemura T, Kitagawa S (2003) Prussian Blue nanoparticles protected by poly(vinylpyrrolidone). J Am Chem Soc 125:7814–7815

    Article  CAS  Google Scholar 

  • Uemura T, Ohba M, Kitagawa S (2004) Size and surface effects of Prussian Blue nanoparticles protected by organic polymers. Inorg Chem 43:7339–7345

    Article  CAS  Google Scholar 

  • Underhill AE, Clark RA, Clemenson PI, Friend R, Allen M, Marsden I, Kobayashi A, Kobayashi H (1992) Molecular conductors based on complex metal anions. Phosphorus, Sulfur Silicon Relat Elem 67:311–325

    Article  CAS  Google Scholar 

  • Vainrub A, Canadell E, Jerome D, Bernier P, Nunes T, Bruniquel MF, Cassoux P (1990) Temperature-dependent locally resolved carbon-13 Knight shifts in the organic conductor TTF[Ni(dmit)2]2. J Phys 51:2465–2476

    Article  CAS  Google Scholar 

  • Vicente R, Ribas J, Cassoux P (1984) Unexpected mononuclear metal complexes derived from 1,3,4,6-tetrathiapentalene-2,5-dione. Nouveau Journal de Chimie 8:653–658

    CAS  Google Scholar 

  • Vicente R, Ribas J, Cassoux P, Valade L (1986) Synthesis, characterization and properties of highly conducting organometallic polymers derived from the ethylenetetrathiolate anion. Synth Met 13:265–280

    Article  CAS  Google Scholar 

  • Vogt T, Faulmann C, Soules R, Lecante P, Mosset A, Castan P, Cassoux P, Galy J (2002) A LAXS (large angle x-ray scattering) and EXAFS (extended x-ray absorption fine structure) investigation of conductive amorphous nickel tetrathiolato polymers. J Am Chem Soc 110:1833–1840

    Article  Google Scholar 

  • Vondrova M, Klimczuk T, Miller VL, Kirby BW, Yao N, Cava RJ, Bocarsly AB (2005) Supported superparamagnetic Pd/Co alloy nanoparticles prepared from a silica/cyanogel co-gel. Chem Mater 17:6216–6218

    Article  CAS  Google Scholar 

  • Wudl F, Heeger AJ, Dirk CW (1986) Transition metal poly(benzodithiolene), US Patent 4626586

  • Yoshioka N, Nishide H, Inagaki K, Tsuchida E (1990) Electrical conductive and magnetic properties of conjugated tetrathiolate nickel polymers. Polym Bull 23:631–636

    Article  CAS  Google Scholar 

  • Zhou PH, Xue DS (2004) Finite-size effect on magnetic properties in Prussian blue nanowire arrays. J Appl Phys 96:610–614

    Article  CAS  Google Scholar 

  • Zhou P, Xue D, Luo H, Chen X (2002) Fabrication, structure, and magnetic properties of highly ordered Prussian Blue nanowire arrays. Nano Lett 2:845–847

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Faulmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7862 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulmann, C., Chahine, J., Jacob, K. et al. Nickel ethylene tetrathiolate polymers as nanoparticles: a new synthesis for future applications?. J Nanopart Res 15, 1586 (2013). https://doi.org/10.1007/s11051-013-1586-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1586-5

Keywords

Navigation