Skip to main content
Log in

Semiconductor nanocrystals dispersed in imidazolium-based ionic liquids: a spectroscopic and morphological investigation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A growing interest is devoted to the study of imidazolium-based ionic liquids as innovative materials to combine with functional elements for advanced technological applications. Materials based on semiconductor and oxide nanocrystals in ionic liquids can be promising for their integration in lithium batteries, as well as in innovative solar cells. Although the physical chemical properties and the solvation dynamics of bare ionic liquids have been extensively studied, their combination with colloidal nanocrystals still remains almost unexplored. Here, the optical properties of organic-capped luminescent cadmium selenide nanocrystals coated by a shell of zinc sulfide (CdSe(ZnS)) dispersed in 1,3-dialkyl imidazolium ionic liquids have been investigated, also in dependence of the alkyl chain length on the imidazolium ring and of the anion nature, by using both time-integrated and time-resolved optical spectroscopy. The observed variations in decay profiles of the ionic liquid in presence of colloidal nanocrystals suggest that the dispersion of the nanostructures induces modifications in the ionic liquid structural order. Finally, atomic force microscopy analysis has provided insight into the topography of the investigated dispersions deposited as film, confirming the organization of the ionic liquids in super-structures, also upon nanocrystal incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43(38):4988–4992. doi:10.1002/anie.200460091

    Article  CAS  Google Scholar 

  • Antony JH, Mertens D, Dölle A, Wasserscheid P, Carper WR (2003) Molecular reorientational dynamics of the neat ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate by measurement of 13C nuclear magnetic relaxation data. ChemPhysChem 4(6):588–594. doi:10.1002/cphc.200200603

    Article  CAS  Google Scholar 

  • Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8(8):621–629. doi:10.1038/nmat2448

    Article  CAS  Google Scholar 

  • Arzhantsev S, Jin H, Ito N, Maroncelli M (2006) Observing the complete solvation response of DCS in imidazolium ionic liquids, from the femtosecond to nanosecond regimes. Chem Phys Lett 417(4–6):524–529. doi:10.1016/j.cplett.2005.10.062

    Article  CAS  Google Scholar 

  • Bai Y, Cao Y, Zhang J, Wang M, Li R, Wang P, Zakeeruddin SM, Gratzel M (2008) High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat Mater 7(8):626–630. doi:10.1038/nmat2224

    Article  CAS  Google Scholar 

  • Bennett MD, Leo DJ (2004) Ionic liquids as stable solvents for ionic polymer transducers. Sens Actuators, A 115(1):79–90. doi:10.1016/j.sna.2004.03.043

    Article  Google Scholar 

  • Binetti E, Panniello A, Triggiani L, Tommasi R, Agostiano A, Curri ML, Striccoli M (2012) Spectroscopic study on imidazolium based ionic liquids: effect of alkyl chain length and anion. J Phys Chem B 116(11):3512–3518. doi:10.1021/jp300517h

    Article  CAS  Google Scholar 

  • Blanco D, Battez A, Viesca J, González R, Fernández-González A (2011) Lubrication of CrN coating with ethyl-dimethyl-2-methoxyethylammonium tris(pentafluoroethyl)trifluorophosphate ionic liquid as additive to PAO 6. Tribol Lett 41(1):295–302. doi:10.1007/s11249-010-9714-1

    Article  CAS  Google Scholar 

  • Burrell AK, Sesto RED, Baker SN, McCleskey TM, Baker GA (2007) The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. Green Chem 9(5):449–454. doi:10.1039/b615950h

    Article  CAS  Google Scholar 

  • Buzzeo MC, Hardacre C, Compton RG (2004) Use of room temperature ionic liquids in gas sensor design. Anal Chem 76(15):4583–4588. doi:10.1021/ac040042w

    Article  CAS  Google Scholar 

  • Carmichael AJ, Hardacre C, Holbrey JD, Nieuwenhuyzen M, Seddon KR (2001) Molecular layering and local order in thin films of 1-alkyl-3-methylimidazolium ionic liquids using X-ray reflectivity. Mol Phys 99(10):795–800. doi:10.1080/00268970010012301

    Article  CAS  Google Scholar 

  • Castner JEW, Wishart JF (2010) Spotlight on ionic liquids. J Chem Phys 132(12):120901–120909. doi:10.1063/1.3373178

    Article  Google Scholar 

  • Castner EW, Margulis CJ, Maroncelli M, Wishart JF (2011) Ionic liquids: structure and photochemical reactions. Annu Rev Phys Chem 62(1):85–105. doi:10.1146/annurev-physchem-032210-103421

    Article  CAS  Google Scholar 

  • Chen S, Wu G, Sha M, Huang S (2007) Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes. J Am Chem Soc 129(9):2416–2417. doi:10.1021/ja067972c

    Article  CAS  Google Scholar 

  • Chen X-W, Liu J-W, Wang J-H (2011) A highly fluorescent hydrophilic ionic liquid as a potential probe for the sensing of biomacromolecules. J Phys Chem B 115(6):1524–1530. doi:10.1021/jp109121h

    Article  Google Scholar 

  • Chiappe C (2007) Nanostructural organization of ionic liquids: theoretical and experimental evidences of the presence of well defined local structures in ionic liquids. Monatsh Chem 138(11):1035–1043. doi:10.1007/s00706-007-0726-y

    Article  CAS  Google Scholar 

  • Choi H, Baik C, Kang SO, Ko J, Kang M-S, Nazeeruddin MK, Grätzel M (2008) Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. Angew Chem Int Ed 47(2):327–330. doi:10.1002/anie.200703852

    Article  CAS  Google Scholar 

  • Chou S-L, Wang J-Z, Sun J-Z, Wexler D, Forsyth M, Liu H-K, MacFarlane DR, Dou S-X (2008) High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte. Chem Mater 20(22):7044–7051. doi:10.1021/cm801468q

    Article  CAS  Google Scholar 

  • Coasne B, Viau L, Vioux A (2011) Loading-controlled stiffening in nanoconfined ionic liquids. J Phys Chem Lett 2(10):1150–1154. doi:10.1021/jz200411a

    Article  CAS  Google Scholar 

  • Consorti CS, Suarez PAZ, de Souza RF, Burrow RA, Farrar DH, Lough AJ, Loh W, da Silva LHM, Dupont J (2005) Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution. J Phys Chem B 109(10):4341–4349. doi:10.1021/jp0452709

    Article  CAS  Google Scholar 

  • Deshmukh RR, Rajagopal R, Srinivasan KV (2001) Ultrasound promoted C–C bond formation: heck reaction at ambient conditions in room temperature ionic liquids. Chem Commun 17:1544–1545. doi:10.1039/B104532F

    Article  Google Scholar 

  • Ding J, Zhou D, Spinks G, Wallace G, Forsyth S, Forsyth M, MacFarlane D (2003) Use of ionic liquids as electrolytes in electromechanical actuator systems based on inherently conducting polymers. Chem Mater 15(12):2392–2398. doi:10.1021/cm020918k

    Article  CAS  Google Scholar 

  • Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350. doi:10.1590/S0103-50532004000300002

    Article  CAS  Google Scholar 

  • Dupont J, Suarez PAZ (2006) Physico-chemical processes in imidazolium ionic liquids. Phys Chem Chem Phys 8(21):2441–2452. doi:10.1039/B602046A

    Article  CAS  Google Scholar 

  • Dupont J, de Souza RF, Suarez PAZ (2002a) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102(10):3667–3692. doi:10.1021/cr010338r

    Article  CAS  Google Scholar 

  • Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002b) Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 124(16):4228–4229. doi:10.1021/ja025818u

    Article  CAS  Google Scholar 

  • Earle MJ, Gordon CM, Plechkova NV, Seddon KR, Welton T (2006) Decolorization of ionic liquids for spectroscopy. Anal Chem 79(2):758–764. doi:10.1021/ac061481t

    Article  Google Scholar 

  • Endres F, El Abedin SZ (2002) Electrodeposition of stable and narrowly dispersed germanium nanoclusters from an ionic liquid. Chem Commun 8:892–893. doi:10.1039/B110716J

    Article  Google Scholar 

  • Endres F, Zein El Abedin S (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8(18):2101–2116. doi:10.1039/B600519P

    Article  CAS  Google Scholar 

  • Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR, Dupont J (2003) The use of imidazolium ionic liquids for the formation and stabilization of Ir0 and Rh0 nanoparticles: efficient catalysts for the hydrogenation of arenes. Chem Eur J 9(14):3263–3269. doi:10.1002/chem.200304753

    Article  CAS  Google Scholar 

  • Fox DM, Awad WH, Gilman JW, Maupin PH, De Long HC, Trulove PC (2003) Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts. Green Chem 5(6):724–727. doi:10.1039/B308444B

    Article  CAS  Google Scholar 

  • Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based Bucky gel. Angew Chem Int Ed 44(16):2410–2413. doi:10.1002/anie.200462318

    Article  CAS  Google Scholar 

  • Galinski M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51(26):5567–5580. doi:10.1016/j.electacta.2006.03.016

    Article  CAS  Google Scholar 

  • Gordon CM (2001) New developments in catalysis using ionic liquids. Appl Catal A 222(1–2):101–117. doi:10.1016/S0926-860X(01)00834-1

    CAS  Google Scholar 

  • Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A-Chem 164(1–3):3–14. doi:10.1016/j.jphotochem.2004.02.023

    Article  Google Scholar 

  • Guerrero-Sanchez C, Lara-Ceniceros T, Jimenez-Regalado E, Raşa M, Schubert US (2007) Magnetorheological fluids based on ionic liquids. Adv Mater 19(13):1740–1747. doi:10.1002/adma.200700302

    Article  CAS  Google Scholar 

  • Han X, Armstrong DW (2007) Ionic liquids in separations. Acc Chem Res 40(11):1079–1086. doi:10.1021/ar700044y

    Article  CAS  Google Scholar 

  • Hu Z, Margulis CJ (2006) Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect. Proc Natl Acad Sci USA 103(4):831–836. doi:10.1073/pnas.0507364103

    Article  CAS  Google Scholar 

  • Israelachvili JN (ed) (1992) In: Intermolecular and surface forces. 2nd edn. Academic Press, New York. ISBN 978-0-12-391927-4

  • Jin H, Li X, Maroncelli M (2007) Heterogeneous solute dynamics in room temperature ionic liquids. J Phys Chem B 111(48):13473–13478. doi:10.1021/jp077226+

    Article  CAS  Google Scholar 

  • Jovanovski V, González-Pedro V, Giménez S, Azaceta E, Cabañero G, Grande H, Tena-Zaera R, Mora-Seró I, Bisquert J (2011) A sulfide/polysulfide-based ionic liquid electrolyte for quantum dot-sensitized solar cells. J Am Chem Soc 133(50):20156–20159. doi:10.1021/ja2096865

    Article  CAS  Google Scholar 

  • Karmakar R, Samanta A (2002a) Solvation dynamics of coumarin-153 in a room-temperature ionic liquid. J Phys Chem A 106(18):4447–4452. doi:10.1021/jp011498+

    Article  CAS  Google Scholar 

  • Karmakar R, Samanta A (2002b) Steady-state and time-resolved fluorescence behavior of C153 and PRODAN in room-temperature ionic liquids. J Phys Chem A 106(28):6670–6675. doi:10.1021/jp0143591

    Article  CAS  Google Scholar 

  • Katoh R, Hara M, Tsuzuki S (2008) Ion pair formation in [bmim]I ionic liquids. J Phys Chem B 112(48):15426–15430. doi:10.1021/jp806578h

    Article  CAS  Google Scholar 

  • Khare V, Kraupner A, Mantion A, Jeličić A, Thünemann AF, Giordano C, Taubert A (2010) Stable iron carbide nanoparticle dispersions in [Emim][SCN] and [Emim][N(CN)2] ionic liquids. Langmuir 26(13):10600–10605. doi:10.1021/la100775m

    Article  CAS  Google Scholar 

  • Lee C-M, Jeong H-J, Lim ST, Sohn M-H, Kim DW (2010) Synthesis of iron oxide nanoparticles with control over shape using imidazolium-based ionic liquids. ACS Appl Mater Interfaces 2(3):756–759. doi:10.1021/am900769x

    Article  CAS  Google Scholar 

  • Liu J-F, Jiang G-B, Jönsson JÅ (2005) Application of ionic liquids in analytical chemistry. Trends Anal Chem 24(1):20–27. doi:10.1016/j.trac.2004.09.005

    Article  Google Scholar 

  • Liu Y, Zhang Y, Wu G, Hu J (2006) Coexistence of liquid and solid phases of Bmim-PF6 ionic liquid on mica surfaces at room temperature. J Am Chem Soc 128(23):7456–7457. doi:10.1021/ja062685u

    Article  CAS  Google Scholar 

  • Lunstroot K, Baeten L, Nockemann P, Martens J, Verlooy P, Ye X, Görller-Walrand C, Binnemans K, Driesen K (2009) Luminescence of LaF3:ln3+ nanocrystal dispersions in ionic liquids. J Phys Chem C 113(31):13532–13538. doi:10.1021/jp9015118

    Article  CAS  Google Scholar 

  • Maase M (2008) Industrial applications of ionic liquids. In: Ionic liquids in synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi:10.1002/9783527621194.ch9

  • MacFarlane DR, Forsyth M, Howlett PC, Pringle JM, Sun J, Annat G, Neil W, Izgorodina EI (2007) Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc Chem Res 40(11):1165–1173. doi:10.1021/ar7000952

    Article  CAS  Google Scholar 

  • Mandal PK, Sarkar M, Samanta A (2004) Excitation-wavelength-dependent fluorescence behavior of some dipolar molecules in room-temperature ionic liquids. J Phys Chem A 108(42):9048–9053. doi:10.1021/jp047250c

    Article  CAS  Google Scholar 

  • Mandal PK, Paul A, Samanta A (2006) Excitation wavelength dependent fluorescence behavior of the room temperature ionic liquids and dissolved dipolar solutes. J Photochem Photobiol A-Chem 182(2):113–120. doi:10.1016/j.jphotochem.2006.01.003

    Article  CAS  Google Scholar 

  • Mekis I, Talapin DV, Kornowski A, Haase M, Weller H (2003) One-pot synthesis of highly luminescent CdSe/CdS core–shell nanocrystals via organometallic and “greener” chemical approaches. J Phys Chem B 107(30):7454–7462. doi:10.1021/jp0278364

    Article  CAS  Google Scholar 

  • Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Res 30(1):545–610. doi:10.1146/annurev.matsci.30.1.545

    Article  CAS  Google Scholar 

  • Nakashima T, Nonoguchi Y, Kawai T (2008) Ionic liquid-based luminescent composite materials. Polym Adv Technol 19(10):1401–1405. doi:10.1002/pat.1202

    Article  CAS  Google Scholar 

  • Néouze M-A, Bideau JL, Gaveau P, Bellayer S, Vioux A (2006) Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks. Chem Mater 18(17):3931–3936. doi:10.1021/cm060656c

    Article  Google Scholar 

  • Nockemann P, Binnemans K, Driesen K (2005) Purification of imidazolium ionic liquids for spectroscopic applications. Chem Phys Lett 415(1–3):131–136. doi:10.1016/j.cplett.2005.08.128

    Article  CAS  Google Scholar 

  • Norris DJ (2010) Electronic structure in semiconductor nanocrystals: optical experiments. In: Klimov V (ed) Nanocrystal quantum dots. 2nd edn. pp 64–96. ISBN 9781420079265

  • O’Connor DV, Phillips D (1984) Time-correlated single photon counting. Academic Press, London. ISBN 0125241402 9780125241403

  • Palacio M, Bhushan B (2010) A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol Lett 40(2):247–268. doi:10.1007/s11249-010-9671-8

    Article  CAS  Google Scholar 

  • Paul A, Samanta A (2006) Optical absorption and fluorescence studies on imidazolium ionic liquids comprising the bis(trifluoromethanesulphonyl)imide anion. J Chem Sci 118(4):335–340. doi:10.1007/bf02708527

    Article  CAS  Google Scholar 

  • Paul A, Mandal PK, Samanta A (2005a) How transparent are the imidazolium ionic liquids? A case study with 1-methyl-3-butylimidazolium hexafluorophosphate, [bmim][PF6]. Chem Phys Lett 402(4–6):375–379. doi:10.1016/j.cplett.2004.12.060

    Article  CAS  Google Scholar 

  • Paul A, Mandal PK, Samanta A (2005b) On the optical properties of the imidazolium ionic liquids. J Phys Chem B 109(18):9148–9153. doi:10.1021/jp0503967

    Article  CAS  Google Scholar 

  • Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150. doi:10.1039/B006677J

    Article  CAS  Google Scholar 

  • Rogers RD, Seddon KR (2003) Ionic liquids–solvents of the future? Science 302(5646):792–793. doi:10.1126/science.1090313

    Article  Google Scholar 

  • Sakaebe H, Matsumoto H, Tatsumi K (2007) Application of room temperature ionic liquids to Li batteries. Electrochim Acta 53(3):1048–1054. doi:10.1016/j.electacta.2007.02.054

    Article  CAS  Google Scholar 

  • Samanta A (2006) Dynamic stokes shift and excitation wavelength dependent fluorescence of dipolar molecules in room temperature ionic liquids. J Phys Chem B 110(28):13704–13716. doi:10.1021/jp060441q

    Article  CAS  Google Scholar 

  • Samanta A (2010) Solvation dynamics in ionic liquids: what we have learned from the dynamic fluorescence Stokes shift studies. J Phys Chem Lett 1(10):1557–1562. doi:10.1021/jz100273b

    Article  CAS  Google Scholar 

  • Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2(6):363–365. doi:10.1038/nmat907

    Article  CAS  Google Scholar 

  • Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Usami A, Mita Y, Kihira N, Watanabe M, Terada N (2006) Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J Phys Chem B 110(21):10228–10230. doi:10.1021/jp0620872

    Article  CAS  Google Scholar 

  • Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K, Someya T (2009) Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater 8(6):494–499. doi:10.1038/nmat2459

    Article  CAS  Google Scholar 

  • Shen Y, Zhang Y, Han D, Wang Z, Kuehner D, Niu L (2009) Preparation of colorless ionic liquids “on water” for spectroscopy. Talanta 78(3):805–808. doi:10.1016/j.talanta.2008.12.056

    Article  CAS  Google Scholar 

  • Shiflett MB, Yokozeki A (2007) Hydrogen substitution effect on the solubility of per halogenated compounds in ionic liquid [bmim][PF6]. Fluid Phase Equilib 259(2):210–217. doi:10.1016/j.fluid.2007.07.035

    Article  CAS  Google Scholar 

  • Singh T, Kumar A (2008) Fluorescence behavior and specific interactions of an ionic liquid in ethylene glycol derivatives. J Phys Chem B 112(13):4079–4086. doi:10.1021/jp711711z

    Article  CAS  Google Scholar 

  • Stark A, Behrend P, Braun O, Muller A, Ranke J, Ondruschka B, Jastorff B (2008) Purity specification methods for ionic liquids. Green Chem 10(11):1152–1161. doi:10.1039/B808532C

    Article  CAS  Google Scholar 

  • Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2009) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110(1):389–458. doi:10.1021/cr900137k

    Article  Google Scholar 

  • Tang F, Wu K, Ding L, Yuan J, Liu Q, Nie L, Yao S (2008) Purification of undiluted ionic liquids from trace-colored impurities for spectroscopy by octadecylsilyl solid-phase extraction. Sep Purif Technol 60(3):245–250. doi:10.1016/j.seppur.2007.08.018

    Article  CAS  Google Scholar 

  • Taubert A (2004) CuCl nanoplatelets from an ionic liquid–crystal precursor. Angew Chem Int Ed 43(40):5380–5382. doi:10.1002/anie.200460846

    Article  CAS  Google Scholar 

  • Torimoto T, Tsuda T, Okazaki K-I, Kuwabata S (2010) New frontiers in materials science opened by ionic liquids. Adv Mater 22(11):1196–1221. doi:10.1002/adma.200902184

    Article  CAS  Google Scholar 

  • Wang Y, Voth GA (2006) Tail aggregation and domain diffusion in ionic liquids. J Phys Chem B 110(37):18601–18608. doi:10.1021/jp063199w

    Article  CAS  Google Scholar 

  • Wang J, Wang H, Zhang S, Zhang H, Zhao Y (2007a) Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [Cnmim]Br (n = 4, 6, 8, 10, 12) in aqueous solutions. J Phys Chem B 111(22):6181–6188. doi:10.1021/jp068798h

    Article  CAS  Google Scholar 

  • Wang Y, Maksimuk S, Shen R, Yang H (2007b) Synthesis of iron oxide nanoparticles using a freshly-made or recycled imidazolium-based ionic liquid. Green Chem 9(10):1051–1056. doi:10.1039/B618933D

    Article  Google Scholar 

  • Ward MD (2001) Bulk crystals to surfaces: combining X-ray diffraction and atomic force microscopy to probe the structure and formation of crystal interfaces. Chem Rev 101(6):1697–1726. doi:10.1021/cr000020j

    Article  CAS  Google Scholar 

  • Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607(2):126–135. doi:10.1016/j.aca.2007.12.011

    Article  CAS  Google Scholar 

  • Weingärtner H (2008) Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed 47(4):654–670. doi:10.1002/anie.200604951

    Article  Google Scholar 

  • Wishart JF, Castner JEW (2007) The physical chemistry of ionic liquids. J Phys Chem B 111(18):4639–4640. doi:10.1021/jp072262u

    Article  CAS  Google Scholar 

  • Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860. doi:10.1021/cm034081k

    Article  CAS  Google Scholar 

  • Zhang ZC (2006) Catalysis in ionic liquids. In: Bruce CG, Helmut K (eds) Advances in catalysis, vol 49. Academic Press, New York, pp 153–237. doi:10.1016/S0360-0564(05)49003-3

    Chapter  Google Scholar 

  • Zhang J, Zhang Q, Shi F, Zhang S, Qiao B, Liu L, Ma Y, Deng Y (2008) Greatly enhanced fluorescence of dicyanamide anion based ionic liquids confined into mesoporous silica gel. Chem Phys Lett 461(4–6):229–234. doi:10.1016/j.cplett.2008.07.015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been financially supported by the EU 7th FP ORION project (CP-IP 229036-2). The authors gratefully thank Solvionic (France) for supplying the ILs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinella Striccoli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 466 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panniello, A., Binetti, E., Ingrosso, C. et al. Semiconductor nanocrystals dispersed in imidazolium-based ionic liquids: a spectroscopic and morphological investigation. J Nanopart Res 15, 1567 (2013). https://doi.org/10.1007/s11051-013-1567-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1567-8

Keywords

Navigation