Skip to main content

Advertisement

Log in

Spectroscopic analysis of the riboflavin—serum albumins interaction on silver nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Spectrophotometric behavior of riboflavin (RF) adsorbed on silver nanoparticles as well as its interaction with two serum albumins, BSA and HSA, respectively, has been evidenced. The time evolution of the plasmonic features of the complexes formed by RF/BSA/HSA and Ag(0) nanoparticles having an average diameter of 10.0 ± 2.0 nm have been investigated by UV–Vis absorption spectroscopy. Using steady-state and time-resolved fluorescence spectroscopy, the structure, stability, and dynamics of the serum albumins have been studied. The efficiency of energy transfer process between RF and serum albumins on silver nanoparticles has been estimated. A reaction mechanism of RF with silver nanoparticles is also proposed and the results are discussed with relevance to the involvement of the silver nanoparticles to the redox process of RF and to the RF–serum albumins interaction into a silver nanoparticles complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  • Angelescu DG, Vasilescu M, Somoghi R et al (2010) Kinetics and optical properties of the silver nanoparticles in aqueous L64 block copolymer solutions. Colloid Surfaces A 366:155–162

    Article  CAS  Google Scholar 

  • Bi S, Ding L, Tian Y et al (2004) Investigation of the interaction between flavonoids and human serum albumin. J Mol Struct 703:37–45

    Article  CAS  Google Scholar 

  • Bi S, Song D, Kan Y et al (2005) Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins. Spectrochim Acta A 62:203–212

    Article  Google Scholar 

  • Bolotin PA, Baranovsky SF, Chernyshev DN et al (2007) Spectrophotometric study of the solution interactions between riboflavin, sodium salicylate and caffeine. Int J Phys Sci 2:068–072

    Google Scholar 

  • Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203

    Article  CAS  Google Scholar 

  • Codoner A, Medina P, Ortiz C et al (1993) Spectroscopic study of molecular associations between and some (dihydro)beta-carboline derivatives. Spectrochim Acta 49A:321–327

    CAS  Google Scholar 

  • Datta S, Mukhopadhyay C, Bhattacharya S et al (2006) Stability and conformation of the complexes of riboflavin with aromatic hydroxy compounds in an aqueous medium. Spectrochim Acta 64A:116–126

    CAS  Google Scholar 

  • De-Llanos R, Sanchez-Cortes S, Domingo C et al (2011) Surface Plasmon effects on the binding of antitumoral drug emodin to bovine serum albumin. J Phys Chem C 115:12419–12429

    Article  CAS  Google Scholar 

  • Dinoiu V, Voicescu M, Lungu L et al (2011) Spectroscopic study on the riboflavin–plant extracts interaction. Rev Chim 62:1111–1114

    CAS  Google Scholar 

  • Edwards AM, Silva E, Jofre B et al (1994) Visible light effects on tumoral cells in a culture medium enriched with tryptophan and riboflavin. Photochem Photobiol 24:179–186

    Article  CAS  Google Scholar 

  • Evstigneev MP, Evstigneev VP, Davies DB et al (2006a) NMR investigation of the effect of caffeine on the hetero-association of an anticancer drug with a vitamin. Chem Phys Lett 432:248–251

    Article  CAS  Google Scholar 

  • Evstigneev MP, Evstigneev VP, Hernandez Santiago AA et al (2006b) Effect of a mixture of caffeine and nicotinamide on the solubility of vitamin (B-2) in aqueous solution. Eur J Pharm Sci 28:59–66

    Article  CAS  Google Scholar 

  • Förster T, Sinanoglu O (1996) Modern quantum chemistry. Academic Press, New York

    Google Scholar 

  • Gaidau C, Petica A, Plavan V et al (2009) Investigation on silver nanoparticles interaction with collagen based materials. J Optoelectron Adv Mater 11:845–851

    CAS  Google Scholar 

  • He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  CAS  Google Scholar 

  • Heelis PF (1982) The photophysical and photochemical properties of flavins (isoalloxazines). Chem Soc Rev 11:15–39

    Article  CAS  Google Scholar 

  • Hermoso JA, Mayoral T, Faro M et al (2002) Mechanism of coenzyme recognition and binding revealed by crystal structure analysis of ferredoxin–NADP(+) reductase complexed with NADP(+). J Mol Biol 319:1133–1142

    Article  CAS  Google Scholar 

  • Hongwei Z, Ge Min, Zhaoxia Z et al (2006) Spectroscopic studies on the interaction between riboflavin and albumins. Spectrochim Acta, Part A 65:811–817

    Article  Google Scholar 

  • Hu YJ, Liu Y, Zhang LX (2005) Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J Mol Struct 750:174–178

    Article  CAS  Google Scholar 

  • Il’ichev YV, Perry JL, Simon JD (2002) Interaction of ochratoxin A with human serum albumin. Preferential binding of dianion and pH effects. J Phys Chem B 106:452–459

    Article  Google Scholar 

  • Ionita MA, Ion RM, Carstocea B (2003) Photochemical and photodynamic properties of Vitamin B2-riboflavin in liposomes. Oftalmologia 58:29–34

    CAS  Google Scholar 

  • Johansson JS, Eckenhoff RG, Dutton PL (1995) Binding of halothane to serum albumin demonstrated using tryptophan fluorescence. Anesthesiology 83:316–324

    Article  CAS  Google Scholar 

  • Kato Y, Uchida K, Kawakishi S (1994) Aggregation of collagen exposed to UVA in the presence of riboflavin: a plausible role of tyrosine modification. Photochem Photobiol 59:343–349

    Article  CAS  Google Scholar 

  • Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53

    CAS  Google Scholar 

  • Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum Press, New York

    Book  Google Scholar 

  • Levin AD, Aseichev AV, Azizova OA et al (2010) Modification of resonance light scattering spectra of silver nanoparticles due to their interactions with protein molecules. Colloidal J 72:23–30

    Article  CAS  Google Scholar 

  • Liu Y, Liu X, Wang X (2011) Biomimetic synthesis of gelatin polypeptide-assisted noble-metal nanoparticles and their interaction study. Nanoscale Res Lett 6:1–11

    CAS  Google Scholar 

  • Louie TM, Yang H, Karnchanaphanurach P et al (2002) FAD is a preferred substrate and an inhibitor of Escherichia coli general NAD(P)H: flavin oxidoreductase. J Biol Chem 277:39450–39455

    Article  CAS  Google Scholar 

  • Miura R (2001) Versatility and specificity in flavoenzymes: control mechanisms of flavin reactivity. Chem Rec 1:183–194

    Article  CAS  Google Scholar 

  • Müller WE, Wollert U (1979) Human serum albumin as a ‘silent receptor’ for drugs and endogenous substances. Pharmacology 19:59–67

    Article  Google Scholar 

  • Munoz MA, Carmona C, Hidalgo J et al (1995) Molecular associations of flavins with betacarbolines and related indoles. Bioorg Med Chem 3:41–47

    Article  CAS  Google Scholar 

  • Prashant KJ, Huang X, El-Sayed IH (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology and medicine. Acc Chem Res 41:1578–1586

    Article  Google Scholar 

  • Ramu A, Mehta MM, Liu J et al (2000) The riboflavin mediated photooxidation of doxorubicin. Cancer Chemother Pharmacol 46:449–458

    Article  CAS  Google Scholar 

  • Ray K, Chowdhury MH, Szmacinski H et al (2008) Metal-enhanced intrinsic fluorescence of proteins on silver nanostructured surfaces towards label-free detection. J Phys Chem C 112:17957–17963

    Article  CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol Rev 23:1–6

    Google Scholar 

  • SeH Jung, Choi SJ, Kim HJ et al (2006) Molecular characteristics of bovine serum albumin–dextran conjugates. Biosci Biotechnol Biochem 70:2064–2070

    Article  Google Scholar 

  • Silva E, Ugarte P, Andrade A et al (1994) Riboflavin-sensitized photo-processes of tryptophan. J Photochem Photobiol B 23:43–48

    Article  CAS  Google Scholar 

  • Silva D, Cortez CM, Louro SRW (2004) Chlorpromazine interactions to sera albumins: a study by the quenching of fluorescence. Spectrochim Acta A 60:1215–1223

    Article  Google Scholar 

  • Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052–1061

    CAS  Google Scholar 

  • Sugio S, Kashima A, Mochizuki S et al (1999) Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng 12:439–446

    Article  CAS  Google Scholar 

  • Sun M, Moore TA, Song PS (1972) Molecular luminescence studies of flavins. I. The excited states of flavins. J Am Chem Soc 94:1730–1740

    Article  CAS  Google Scholar 

  • Szmacinski H, Ray K, Lakowicz JR (2009) Metal-enhanced fluorescence of tryptophan residues in proteins: application towards label-free bioassays. Anal Biochem 385:364–538

    Article  Google Scholar 

  • Veselkov AN, Evstigneev MP, Rozvadovskaya AO et al (2005) 1H NMR analysis of the complex formation of aromatic molecules of antibiotic and vitamin in aqueous solution: heteroassociation of actinomycin D and flavin mononucleotide. Biophysics 50:20–27

    CAS  Google Scholar 

  • Voicescu M, Meghea A (2004) The effect of cyclodextrins on antioxidative activity of riboflavin (Vitamin B2). UPB Sci Bull Series B 66:19–24

    CAS  Google Scholar 

  • Voicescu M, Ionita G, Constantinescu T et al (2006) The oxidative activity of riboflavin studied by luminescence methods: the effect of cysteine, arginine, lysine and histidine aminoacids. Rev Roum Chim 51:683–690

    CAS  Google Scholar 

  • Voicescu M, Ionita G, Beteringhe A et al (2008) The antioxidative activity of riboflavin in the presence of antipyrin. Spectroscopic studies. J Fluorescence 18:953–959

    Article  CAS  Google Scholar 

  • Voicescu M, Ionescu S, Angelescu D (2012) Spectroscopic and coarse-grained simulation studies of the BSA and HSA protein adsorption on silver nanoparticles. J Nanopart Res. doi:10.1007/s11051-012-1174-0

    Google Scholar 

  • Wang F, Huang W, Dai Z (2008) Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin. J Mol Struct 875:509–514

    Article  CAS  Google Scholar 

  • Yamasaki K, Maruyama T, Hansen UK (1996) Characterization of site I on human serum albumin: concept about the structure of a drug binding site. Biochim Biophys Acta 1295:147–157

    Article  Google Scholar 

  • Yang H, Luo G, Pallop K et al (2003) Protein conformational dymanics probed by single - molecule electron transfer. Science 302:262–266

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was a part of the research project proposal, UEFISCDI, project number PN-II-RU-TE-2012-3-0055. This study was also performed in the frame of the Romanian Academy programme and II; 8 theme of the INFRANANOCHEM project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Voicescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voicescu, M., Angelescu, D.G., Ionescu, S. et al. Spectroscopic analysis of the riboflavin—serum albumins interaction on silver nanoparticles. J Nanopart Res 15, 1555 (2013). https://doi.org/10.1007/s11051-013-1555-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1555-z

Keywords

Navigation