Skip to main content
Log in

The role of polyaniline in the formation of iron-containing nanocomposites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Polyaniline (PANI)-coated iron-based nanocomposites with a range of magnetisation and coercivity values were produced by in situ polymerisation of aniline and chemical reduction of Fe3+ by BH4 . We have varied the ratio of aniline to iron, keeping the amount of BH4 added constant, and vice versa. Room-temperature magnetisation loops, X-ray diffraction patterns, Mössbauer spectra and transmission electron microscopy images show that PANI plays two distinct roles: on the one hand, it coats the iron particle surface, preventing oxidation of the Fe cores and, on the other, it enhances the formation of an Fe100−x B x alloy. The incorporation of boron in the alloy is facilitated by the polymer entrapment of small Fe nuclei. The mean particle size determined for composites obtained with low PANI content is (50 ± 20) nm, while for PANI-rich composites (30 ± 10) nm particles are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abu YM, Aoki K (2005) Corrosion protection by polyaniline-coated latex microspheres. J Electroanal Chem 583:133–139

    Article  CAS  Google Scholar 

  • Balakrishnan S, Bonder MJ, Hadjipanayis GC (2009) Chemical reduction synthesis and ac field effect of iron based core–shell magnetic nanoparticles. J Phys D Appl Phys 42:245005

    Article  Google Scholar 

  • Bishop EJ, Fowler DE, Skluzacek JM, Seibel L, Mallouk TE (2010) Anionic homopolymers efficiently target zerovalent iron particles to hydrophobic contaminants in sand columns. Environ Sci Technol 44:9069–9074

    Article  CAS  Google Scholar 

  • Burke NAD, Stover HDH, Dawson FP (2002) Magnetic nanocomposites: preparation and characterization of polymer-coated iron nanoparticles. Chem Mater 14:4752–4761

    Article  CAS  Google Scholar 

  • Carvell J, Ayieta E, Gavrin A, Cheng R, Shah VR, Sokol P (2010) Magnetic properties of iron nanoparticle. J Appl Phys 107:103913

    Article  Google Scholar 

  • Chaure NB, Rhen FMF, Hilton J, Coey JMD (2007) Design and application of a magnetic field gradient electrode. Electrochem Commun 9:155–158

    Article  CAS  Google Scholar 

  • Chien CL, Musser D, Gyorgy EM, Sherwood RC, Chen HS, Luborsky FE, Walter JL (1979) Magnetic properties of amorphous FexB100−x (72 ≤ x ≤ 86) and crystalline Fe3B. Phys Rev B 20:283–295

    Article  CAS  Google Scholar 

  • Clausen BS, Koch CJW, Wells S, Charles SW (1989) Amorphous to crystalline transformation of ultrafine Fe62B38 particles. J Magn Magn Mater 81:138–146

    Article  Google Scholar 

  • Coey JMD (1971) Noncollinear spin arrangement in ultrafine ferromagnetic crystallites. Phys Rev Lett 27:1140–1142

    Article  CAS  Google Scholar 

  • Demirci UB, Miele P (2010) Cobalt in NaBH4 hydrolysis. Phys Chem Chem Phys 12:14651–14665

    Article  CAS  Google Scholar 

  • Domenech A, Costero AM, Banuls MJ, Aurell MJ (2004) Magnetoelectrochemical modulation of pre-organization processes in a 4,4′-dinitrobiphenyl azacrown macrocyclic lactam. Electrochem Comm 6:908–912

    Article  CAS  Google Scholar 

  • Dunlop DJ (1990) Developments in rock magnetism. Rep Prog Phys 53:707–792

    Article  Google Scholar 

  • Dunlop DJ (2002) Theory and application of the Day plot (Mrs/Ms vs. Hcr/Hc). J Geophys Res 107:EPM4

    Google Scholar 

  • Dunne P, Coey JMD (2012) Patterning metallic electrodeposits with magnet arrays. Phys Rev B 85:224411

    Article  Google Scholar 

  • Eibschutz M, Lines ME, Chen HS, Masumoto T (1984) Amorphous structural information from Mössbauer Zeeman spectra: iron-metalloid systems. J Phys F: Met Phys 14:505–520

    Article  CAS  Google Scholar 

  • Folarin OM, Sadiku ER, Maity A (2011) Polymer-noble metal nanocomposites: review. Int J Phys Sci 6:4869–4882

    Google Scholar 

  • Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1995) Chemistry of borohydride reduction of iron(I1) and iron(II1) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders. Inorg Chem 34:28–35

    Article  CAS  Google Scholar 

  • Griffete N, Lamouri A, Herbst F, Felidj N, Ammar S, Mangeney C (2012) Synthesis of highly soluble polymer-coated magnetic nanoparticles using a combination of diazonium salt chemistry and the iniferter method. RSC Adv 2:826–830

    Article  CAS  Google Scholar 

  • Grinstaff MW, Salamon MB, Suslick KS (1993) Magnetic properties of amorphous iron. Phys Rev B 48:269–273

    Article  CAS  Google Scholar 

  • Hirata A, Hirotsu Y (2010) Structure analyses of Fe-based metallic glasses by electron diffraction. Materials 3:5263–5273

    Article  CAS  Google Scholar 

  • Hu Z, Fan Y, Chen Y (1994) A study on the preparation and magnetic properties of Fe100−xBx ultrafine powders. Mater Sci Eng B 25:193–195

    Article  CAS  Google Scholar 

  • Huang J, Kaner RB (2004) A general chemical route to polyaniline nanofibers. J Am Chem Soc 126:851–855

    Article  CAS  Google Scholar 

  • Huber DL (2005) Synthesis, properties and applications of iron nanoparticles. Small 1:482–501

    Article  CAS  Google Scholar 

  • Jagminas A, Mazeika K, Bernotas N, Klimas V, Selskis A, Baltrunas D (2011) Compositional and structural characterization of nanoporous films produced by iron anodizing in ethylene glycol solution. Appl Surf Sci 257:3893–3897

    Article  CAS  Google Scholar 

  • Kamimura T, Nasu S, Tazaki T, Kuzushita K, Morimoto S (2002) Mössbauer spectroscopic study of rust formed on a weathering steel and a mild steel exposed for a long term in an industrial environment. Mater Trans 43:694–703

    Article  CAS  Google Scholar 

  • Khan A, Aldwayyan AS, Alhoshana M, Alsalhia M (2010) Synthesis by in situ chemical oxidative polymerization and characterization of polyaniline/iron oxide nanoparticle composite. Polym Int 59:1690–1694

    Article  CAS  Google Scholar 

  • Larese-Casanova P, Haderlein SB, Kappler A (2010) biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: effect of pH, bicarbonate, phosphate, and humic acids. Geochim Cosmochim Acta 74:3721–3734

    Article  CAS  Google Scholar 

  • Liu ML, Zhou HL, Chen YR, Jia YQ (2005) Room-temperature solid–solid reaction preparation of iron-boron alloy nanoparticles and Mossbauer spectra. Mater Chem Phys 89:289–294

    Article  CAS  Google Scholar 

  • Lv B, Xu Y, Wua D, Sun Y (2009) Preparation and magnetic properties of spindle porous iron nanoparticles. Mater Res Bull 44:961–965

    Article  CAS  Google Scholar 

  • Lyons MEG, O’Brien R, Kinsella M, Gloinn CM, Keelsey GP, Scully PN (2010) Effect of external mangnetic fields on electron transfer and ion pairing dynamics at ferrocenyl alkane thiol SAM/solution interface. Electrochem Commun 12:1527–1530

    Article  CAS  Google Scholar 

  • Ma S, Si PZ, Zhang Y, Wu B, Li YB, Liu JJ, Feng WJ, Ma XL, Zhang ZD (2007) High saturation magnetization FeB(C) nanocapsules. Scripta Mater 57:265–268

    Article  CAS  Google Scholar 

  • Maeda M, Kuroda CS, Shimura T, Tada M, Abe M, Yamamuro S, Sumiyama K, Handa H (2006) Magnetic carriers of iron nanoparticles coated with a functional polymer for high throughput bioscreening. J Appl Phys 99:08H103

    Article  Google Scholar 

  • Majertich SA, Scott JH, Kirkpatrick EM, Chowdary K, Gallagher K, McHenry ME (1997) Magnetic nanoparticles and magnetocrystalline anisotropy. Nanostruct Mater 9(291):300

    Google Scholar 

  • Monzon LMA, Rode K, Venkatesan M, Coey JMD (2012) Electrosynthesis of iron, cobalt and zinc microcrystals and magnetic enhancement of the oxygen reduction reaction. Chem Mater 24:3878–3885

    Article  CAS  Google Scholar 

  • Nakajima T, Nagami I, Ino H (1986) Amorphous Fe-B alloys with high boron concentration. J Mater Sci Lett 5:60–62

    Article  CAS  Google Scholar 

  • Nuraje N, Su K, Yang N, Matsui H (2008) Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers. ACS Nano 2:502–506

    Article  CAS  Google Scholar 

  • Oh JS, Cook DC, Townsend HE (1998) Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact 112:59–65

    Article  CAS  Google Scholar 

  • Okada T, Wakayama NI, Wang W, Shingu H, Okano J, Ozawa T (2003) The effect of magnetic field on the oxygen reduction reaction and its application in polymer electrolyte fuel cells. Electrochim Acta 48:531–539

    Article  CAS  Google Scholar 

  • Petit C, Wang ZL, Pileni MP (2005) Seven-nanometer hexagonal close packed cobalt nanocrystals for high-temperature magnetic applications through a novel annealing process. J Phys Chem B 109:15309–15316

    Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290

    Google Scholar 

  • Pankhurst AQ, Yedra Martínez A, Fernández Barquín L (2004) Interface exchange pinning in amorphous iron–boron nanoparticles. Phys Rev B 69:212401

    Article  Google Scholar 

  • Shi J, Xu H, Zhao H, Lu L (2012) Synthesis and properties of Fe3O4/polyaniline and its tiny magnetic field functions during oxygen transfer processes. J Power Sources 205:129–135

    Article  CAS  Google Scholar 

  • Smith TW, Wychlck D (1980) Colloidal iron dispersions prepared via the polymer-catalyzed decomposition of iron pentacarbonyl. J Phys Chem 84:1621–1629

    Article  CAS  Google Scholar 

  • Srikanth H, Hajndl R, Sanders J (2001) Magnetic studies of polymer-coated Fe nanoparticles synthesized by microwave plasma polymerization. Appl Phys Lett 79:3503–3505

    Article  CAS  Google Scholar 

  • Varanda LC, Jafelicci M, Tartaj P, Grady KO, Gonzalez-Carreno T, Morales MP, Munoz T, Serna CJ (2002) Structural and magentic transformation of monodispersed iron oxide particles in a reducing atmosphere. J Appl Phys 92:2079–2085

    Article  CAS  Google Scholar 

  • Wells S, Charles SW, Morup S, Linderoth S, Van Wonterghem J, Larsent J, Madsent MB (1989) A study of Fe–B and Fe–Co–B alloy particles produced by reduction with borohydride. J Phys: Condens Matter 1:8199–8208

    Article  CAS  Google Scholar 

  • Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447

    Article  CAS  Google Scholar 

  • Yang Y, Li L, Chen G, Liu E (2008) Synthesis and characterization of iron-based alloy nanoparticles for magnetorheological fluids. J Magn Magn Mater 320:2030–2038

    Article  CAS  Google Scholar 

  • Yuan ML, Tao JH, Yan GJ, Tan MY, Qiu GZ (2010) Preparation and characterization of Fe/SiO2 core/shell nanocomposites. Trans Nonferrous Met Soc China 20:632–636

    Article  CAS  Google Scholar 

  • Zhang L, Manthiram A (1997a) Chains composed of nanosize metal particles and identifying the factors driving their formation. Appl Phys Lett 70:2469

    Article  CAS  Google Scholar 

  • Zhang L, Manthiram A (1997b) Synthesis and characterization of chains composed of nanometer size Fe-Cr-B particles. J Magn Magn Mater 168:85–93

    Article  CAS  Google Scholar 

  • Zhao Y, Cui G, Wang J, Fan M (2009) Effects of ionic liquids on the characteristics of synthesized nano Fe(0) particles. Inorg Chem 48:10435–10441

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was enabled by the CRANN Advanced Microscopy Laboratory [AML], Trinity College Dublin, and supported by Science Foundation Ireland as part of the NISE 10/IN1.I3006 and RFP/PHY2372 projects. L.M.A. Monzon wants to thank Sarah McCarthy for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena M. A. Monzon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monzon, L.M.A., Ackland, K., Mosivand, S. et al. The role of polyaniline in the formation of iron-containing nanocomposites. J Nanopart Res 15, 1533 (2013). https://doi.org/10.1007/s11051-013-1533-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1533-5

Keywords

Navigation