Skip to main content
Log in

Quantitative evaluation of size selective precipitation of Mn-doped ZnS quantum dots by size distributions calculated from UV/Vis absorbance spectra

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We demonstrate the quantitative evaluation of the sharp classification of manganese-doped zinc sulfide (ZnS:Mn) quantum dots by size selective precipitation. The particles were characterized by the direct conversion of absorbance spectra to particle size distributions (PSDs) and high-resolution transmission electron micrographs (HRTEM). Gradual addition of a poor solvent (2-propanol) to the aqueous colloid led to the flocculation of larger particles. Though the starting suspension after synthesis had an already narrow PSD between 1.5 and 3.2 nm, different particle size fractions were subsequently isolated by the careful adjustment of the good solvent/poor solvent ratio. Moreover, due to the fact that for the analysis of the classification results the size distributions were available, an in-depth understanding of the quality of the distinct classification steps could be achieved. From the PSDs of the feed, as well as the coarse and the fine fractions with their corresponding yields determined after each classification step, an optimum after the first addition of poor solvent was identified with a maximal separation sharpness κ as high as 0.75. Only by the quantitative evaluation of classification results leading to an in-depth understanding of the relevant driving forces, a future transfer of this lab scale post-processing to larger quantities will be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baalousha M, Lead JR (2007) Characterization of natural aquatic colloids (<5 nm) by flow-field flow fractionation and atomic force microscopy. Environ Sci Technol 41:1111–1117

    Article  CAS  Google Scholar 

  • Begum R, Chattopadhyay A (2011) In situ reversible tuning of photoluminescence of Mn2+-doped ZnS quantum dots by redox chemistry. Langmuir 27:6433–6439

    Article  CAS  Google Scholar 

  • Bhargava RN, Gallagher D, Hong X, Nurmikko A (1994) Optical properties of manganese doped nanocrystals of ZnS. Phys Rev Lett 72:416–419

    Article  CAS  Google Scholar 

  • Calzolai L, Gilliland D, Garcia CP, Rossi F (2011) Separation and characterization of gold nanoparticle mixtures by flow-field flow fractionation. J Chromatogr A 1218:4234–4239

    Article  CAS  Google Scholar 

  • Chatterjee A, Priyam A, Ghosh D, Mondal S, Bhattacharya SC, Saha A (2012) Interaction of ZnS nanoparticles with flavins and glucose oxidase: a fluorimetric investigation. J Lumin 132:545–549

    Article  CAS  Google Scholar 

  • Chin S, Park E, Kim M, Bae G, Jurng J (2011) Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by chemical vapour condensation method with different precursor concentration and residence time. J Coll Int Sci 362:470–476

    Article  CAS  Google Scholar 

  • Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475

    Article  CAS  Google Scholar 

  • Galk J, Peukert W, Krahnen J (1999) Industrial classification in a new impeller wheel classifier. Powder Technol 105:186–189

    Article  CAS  Google Scholar 

  • Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: alternative to organometallic synthetic routes. J Phys Chem B 106:7177–7185

    Article  CAS  Google Scholar 

  • Hsia C-H, Wuttig A, Yang H (2011) An accessible approach to preparing water-soluble Mn2+-doped (CdSSe) ZnS (core)shell nanocrystals for ratiometric temperature sensing. ACS Nano 12:9511–9522

    Article  Google Scholar 

  • Kaynuma Y (1988) Quantum size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B 38:9797–9805

    Article  Google Scholar 

  • Komada S, Kobayashi T, Arao Y, Tsuchiya K, Mori Y (2012) Optical properties of manganese-doped zinc sulfide nanoparticles classified by size using poor solvent. Adv Powder Technol 23:872–877

    Article  CAS  Google Scholar 

  • Kowalczyk B, Lagzi I, Grzybowski BA (2011) Nanoseparations: strategies for size and/or shape-selective purification. Curr Opin Coll Int Sci 16:135–148

    Article  CAS  Google Scholar 

  • Kuppayee M, Nachiyar GKV, Ramasamy V (2011) Synthesis and characterization of Cu2+doped ZnS nanoparticles using TOPO and SHMP as capping agents. Appl Surf Sci 257:6779–6786

    Article  CAS  Google Scholar 

  • Lechner MD, Cölfen H, Mittal V, Völkel A, Wohlleben W (2011) Sedimentation measurements with the analytical ultracentrifuge with absorption optica: influence of mie scattering and absorption of the particles. Colloid Polym Sci 289:1145–1155

    Article  CAS  Google Scholar 

  • Leschonski K (1977) Das klassieren disperser feststoffe in gasförmigen medien. Chem Eng Technol 49:708–719

    Google Scholar 

  • Leschonski K, Alex W, Koglin B (1974) Teilchengrößenanalyse. Chem Ing Tech 46:23–26

    Article  Google Scholar 

  • Liu Y, Gibbs M, Puthussery J, Gaik S, Ihly R, Hillhouse HW, Law M (2010) Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett 10:1960–1969

    Article  CAS  Google Scholar 

  • Luo K, Zhou S, Wu L, Gu G (2008) Dispersion and functionalization of nonaqueous synthesized zirconia nanocrystals via attachment of silane coupling agents. Langmuir 24:11497–11505

    Article  CAS  Google Scholar 

  • Marczak R, Segets D, Voigt M, Peukert W (2010) Optimum between purification and colloidal stability of ZnO nanoparticles. Adv Powder Technol 21:41–49

    Article  CAS  Google Scholar 

  • Mastronardi ML, Maier-Flaig F, Faulkner D, Henderson EJ, Kübel C, Lemmer U, Ozin GA (2011) Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. Nano Lett 12:337–342

    Article  Google Scholar 

  • Mehta SK, Kumar S, Gradzielski M (2011) Growth, stability, optical and photoluminescent properties of aqueous colloidal ZnS nanoparticles in relation to surfactant molecular structure. J Coll Int Sci 360:497–507

    Article  CAS  Google Scholar 

  • Mićić OI, Curtis CJ, Jones KM, Sprague JR, Nozik AJ (1994) Synthesis and characterization of InP quantum dots. J Phys Chem 98:4966–4969

    Article  Google Scholar 

  • Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  • Nanda J, Sapra S, Sarma DD (2000) Size-selected zinc sulfide nanocrystallites: synthesis, structure, and optical properties. Chem Mater 12:1018–1024

    Article  CAS  Google Scholar 

  • Park JH, Lee SH, Kim JS, Kwon AK, Park HL, Han SD (2007) White-electroluminescent device with ZnS:Mn, CuCl phosphor. J Lumin 126:566–570

    Article  CAS  Google Scholar 

  • Pesika NS, Stebe KJ, Searson PC (2003) Relationship between absorbance spectra and particle size distributions for quantum-sized nanocrystals. J Phys Chem B 107:10412–10415

    Article  CAS  Google Scholar 

  • Planken KL, Cölfen H (2010) Analytical ultracentrifugation of colloids. Nanoscale 2:1849–1869

    Article  CAS  Google Scholar 

  • Rumpf H (1990) Particle technology. Springer Verlag, Berlin

    Book  Google Scholar 

  • Samanta A, Deng Z, Liu Y (2012) Aqueous synthesis of gluathione-capped CdTe/CdS/ZnS and CdTe/CdSe/ZnS core/shell/shell nanocrystal heterostructures. Langmuir 28:8205–8215

    Article  CAS  Google Scholar 

  • Sapra S, Prakash A, Ghangrekar A, Periasamy N, Sarma DD (2005) Emission properties of manganese-doped ZnS nanocrystals. J Phys Chem B 109:1663–1668

    Article  CAS  Google Scholar 

  • Sapra S, Sarma DD (2004) Evolution of the electronic structure with size in II–IV semiconductor nanocrystals. Phys Rev B 69:125304

    Article  Google Scholar 

  • Schütz S, Kissling K, Gorbach G, Zink A, Piesche M (2009) CFD based development of inertial separators in oil mist removal from crankbase emissions. Filtration 9:73–82

    Google Scholar 

  • Segets D, Gradl J, Klupp Taylor R, Vassilev V, Peukert W (2009) Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility and surface energy. ACS Nano 3:1703–1710

    Article  CAS  Google Scholar 

  • Segets D, Lucas JM, Klupp Taylor RN, Scheele M, Zheng H, Alivisatos AP, Peukert W (2012) Determination of the quantum dot bandgap dependence on particle size from optical absorbance and transmission electron microscopical measurements. ACS Nano 6:9021–9032

    Article  CAS  Google Scholar 

  • Segets D, Marczak R, Schäfer S, Paula C, Gnichwitz J-F, Hirsch A, Peukert W (2011) Experimental and theoretical studies of the colloidal stability of nanoparticles—a general interpretation based on stability maps. ACS Nano 5:4658–4669

    Article  CAS  Google Scholar 

  • Song X, Li L, Qian H, Fang N, Ren J (2006) Highly efficient size separation of CdTe quantum dots by capillary gel electrophoresis using polymer solution sieving medium. Electrophoresis 27:1341–1346

    Article  CAS  Google Scholar 

  • Sooklal K, Cullum BS, Angel M, Murphy CJ (1996) Photophysical properties of ZnS nanoclusters with spatially localized Mn2+. J Phys Chem 100:4551–4555

    Article  CAS  Google Scholar 

  • Spelter LE, Steiwand A, Nirschl H (2010) Processing of dispersions containing fine particles or biological products in tubular bowl centrifuges. Chem Eng Sci 65:4173–4181

    Article  CAS  Google Scholar 

  • Stahl S, Spelter LE, Nirschl H (2008) Investigations on the separation efficiency of tubular bowl centrifuges. Chem Eng Technol 31:1577–1583

    Article  CAS  Google Scholar 

  • Talapin DV, Rogach AL, Mekis I, Haubold S, Kornowski A, Haase M, Weller H (2002) Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Coll Surf A 202:145–154

    Article  CAS  Google Scholar 

  • Teranishi T, Nishida M, Kanehara M (2005) Size-tuning and optical properties of high quality CdSe nanoparticles synthesized from cadmium stearate. Chem Lett 34:1004–1005

    Article  CAS  Google Scholar 

  • Tiemann M, Marlow F, Brieler F, Lindén M (2006) Early stages of ZnS growth studied by stopped-flow UV absorption spectroscopy: effects of educt concentrations on the nanoparticle formation. J Phys Chem B 110:23142–23147

    Article  CAS  Google Scholar 

  • Tiemann M, Weiß Ö, Hartikainen J, Marlow F, Lindén M (2005) Early stages of ZnS nanoparticle growth studied by in situ stopped flow UV absorption spectroscopy. Chemphyschem 6:2113–2119

    Article  CAS  Google Scholar 

  • Toyama T, Adachi D, Fujii M, Nakano Y, Okamoto H (2002) Thin-film electroluminescence device utilizing ZnS:Mn nanocrystals as emission layer. J Non Cryst Solids 299-302:1111–1115

    Article  CAS  Google Scholar 

  • Viswanatha R, Sarma DD (2006) Study of the growth of capped ZnO nanocrystals: a route to rational synthesis. Chem Eur J 12:180–186

    Article  CAS  Google Scholar 

  • Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmüller A, Weller H (1994) CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperatureshift of the excitonic transition energy, and reversible absorbance shift. J Phys Chem 98:7665–7673

    Article  CAS  Google Scholar 

  • Wang C-L, Fang M, Xu S-H, Cui Y-P (2010) Salts-based size selective precipitation: towards mass precipitation of aqueous nanoparticles. Langmuir 26:633–638

    Article  Google Scholar 

  • Xie Z, Markus TZ, Gotesman G, Deutsch Z, Oron D, Naaman R (2011) How isolated are the electronic states of the core in core/shell nanoparticles? ACS Nano 5:863–869

    Article  CAS  Google Scholar 

  • Xu X, Caswell KK, Tucker E, Kabisatpathy S, Brodhacker KL, Scrivens WA (2007) Size and shape separation of gold nanoparticles with preparative gel electrophoresis. J Chromatogr A 1167:35–41

    Article  CAS  Google Scholar 

  • Yang CC, Li S (2008) Size, dimensionality, and constituent stoichiometry dependence of bandgap energies in semiconductor quantum dots and wires. J Phys Chem C 112:2851–2856

    Article  CAS  Google Scholar 

  • Yu I, Tetsuhiko I, Senna M (1996) Optical properties and characteristics of ZnS nanoparticles with homogeneous Mn distribution. J Phys Chem Solids 57:373–379

    Article  CAS  Google Scholar 

  • Zhang W, Li H, Zhang H, Zhou X, Zhong X (2011) Facile synthesis of highly luminescent Mn-doped ZnS nanocrystals. Inorg Chem 50:10432–10438

    Article  CAS  Google Scholar 

  • Zhang Y, Schonoes AM, Clapp AR (2010) Dithiocarbamates as capping ligands for water-soluble quantum dots. Appl Mater Interfaces 2:3384–3395

    Article  CAS  Google Scholar 

  • Zhitomirsky D, Kramer IJ, Labelle AJ, Fischer A, Debnath R, Pan J, Bakr OM, Sargent EH (2012) Colloidal quantum dot photovoltaics: the effect of polydispersity. Nano Lett 12:1007–1012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the German Research Council (DFG) for their financial support (Projects PE427/18-3 within the priority program SPP 1273 and Leibniz program) and for support within the framework of its Excellence Initiative the Cluster of Excellence “Engineering of Advanced Materials” (www.eam.uni-erlangen.de) at the University of Erlangen-Nuremberg. This study was also supported by “Advanced Study for Integrated Particle Science and Technology”, Strategic Development of Research Infrastructure for Private Universities, #S0901039, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Furthermore, we thank Stefan Romeis and Claudia Eisermann for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erdmann Spiecker, Yasushige Mori or Wolfgang Peukert.

Additional information

Doris Segets, So Komada: These authors contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 544 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segets, D., Komada, S., Butz, B. et al. Quantitative evaluation of size selective precipitation of Mn-doped ZnS quantum dots by size distributions calculated from UV/Vis absorbance spectra. J Nanopart Res 15, 1486 (2013). https://doi.org/10.1007/s11051-013-1486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1486-8

Keywords

Navigation