Diffusion transport of nanoparticles at nanochannel boundaries

  • T. S. Mahadevan
  • M. Milosevic
  • M. Kojic
  • F. Hussain
  • N. Kojic
  • R. Serda
  • M. Ferrari
  • A. ZiemysEmail author
Research Paper


The manipulation of matter at the nanoscale has unleashed a great potential for engineering biomedical drug carriers, but the transport of nanoparticles (NPs) under nanoscale confinement is still poorly understood. Using colloidal physics to describe NP interactions, we have computationally studied the passive transport of NPs using experimentally relevant conditions from bulk into a nanochannel of 60–90 nm height. NP size, channel height, and the Debye length are comparable so that changes in nanoscale dimensions may induce substantial changes in NP transport kinetics. We show that subtle changes in nanochannel dimensions may alter the energy barrier by about six orders of magnitude resulting in different NP penetration depths and diffusion mechanisms: ballistic, first-order and quasi zero-order transport regimes. The analysis of NP diffusion by continuum methods reveals that apparent diffusivity is reduced by decreasing channel size. The continuum finite element (FE) numerical method reproduced the colloidal model results only when surface interactions were accounted for. These results give a new insight into NP passive transport at the boundaries of nanoconfined domains, and have implications on the design of nanoscale fluidics and NP systems for biomedical and engineering applications.


Nanoparticle Nanochannel Diffusion Transport Barrier 



The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. This project has been partially supported with the Methodist Research Institute, and also by the Grant OI 174028 of the Serbian Ministry of Education and Science. Authors also acknowledge partial supports from the following funding sources: the Ernest Cockrell Jr. Distinguished Endowed Chair (M.F.), US Department of Defense (W81XWH-09-1-0212) (M.F.), National Institute of Health (U54CA143837, U54CA151668) (M.F.).

Conflict of interest

The author M.F. serves on the Board of Directors of NanoMedical Systems, Inc., ArrowHead Research Corporation and Leonardo Biosystems, and discloses potential financial interest in the companies. All other authors declare no competing financial interests.

Supplementary material

11051_2013_1477_MOESM1_ESM.docx (9.8 mb)
Supplementary material 1 (DOCX 9994 kb)


  1. Abràmoff MD, Magalhães PJ et al (2004) Image processing with ImageJ. Biophotonics int 11(7):36–42Google Scholar
  2. Arya G, Chang CH et al (2001) A critical comparison of equilibrium, non-equilibrium and boundary-driven molecular dynamics techniques for studying transport in microporous materials. J Chem Phys 115(17):8112–8124CrossRefGoogle Scholar
  3. Arya G, Chang H-C et al (2003) Knudsen diffusivity of a hard sphere in a rough slit pore. Phys Rev Lett 91(2):026102–026104CrossRefGoogle Scholar
  4. Bhattacharjee S, Elimelech M et al (1998) DLVO interaction between colloidal particles: beyond derjaguin’s approximation. Croat Chem Acta 71(4):883–903Google Scholar
  5. Biggs S, Mulvaney P et al (1994) Study of anion adsorption at the gold-aqueous solution interface by atomic force microscopy. J Am Chem Soc 116(20):9150–9157CrossRefGoogle Scholar
  6. Boujday S, Blanchard J et al (2007) Polyoxomolybdate-stabilized Ru(0) nanoparticles deposited on mesoporous silica as catalysts for aromatic hydrogenation. Chem Phys Chem 8(18):2636–2642CrossRefGoogle Scholar
  7. Delgado AV, Gonzalez-Caballero F et al (2005) Measurement and interpretation of electrokinetic phenomena. Pure Appl Chem 77(10):1753–1805CrossRefGoogle Scholar
  8. Fine D, Grattoni A et al (2010) A robust nanofluidic membrane with tunable zero-roder release for implantable dose specific drug delivery. Lab Chip 10(22):3074–3083CrossRefGoogle Scholar
  9. Gapinski J, Patkowski A et al (2007) Collective diffusion in charge-stabilized suspensions: concentration and salt effects. J Chem Phys 126:104905CrossRefGoogle Scholar
  10. Grattoni A, Fine D et al (2011) Gated and near-surface diffusion of charged fullerenes in nanochannels. ACS Nano 5(12):9382–9391CrossRefGoogle Scholar
  11. Heinen M, Holmqvist P et al (2011) Pair structure of the hard-sphere Yukawa fluid: an improved analytic method versus simulations, Rogers-Young scheme, and experiment. J Chem Phys 134(4):044532CrossRefGoogle Scholar
  12. Hillier AC, Kim S et al (1996) Measurement of double-layer forces at the electrode/electrolyte interface using the atomic force microscope: potential and anion dependant interactions. J Phys Chem 100:18808–18817CrossRefGoogle Scholar
  13. Hoover WG, Hoover CG (2005) Nonequilibrium molecular dynamics. Condens Matter Phys 8(2(42)):247–260Google Scholar
  14. Hunenberger P (2005) Thermostat algorithms for molecular dynamics simulations. In: Advanced computer simulation approaches for soft matter sciences I, vol 173. Springer, Berlin, pp 105–147Google Scholar
  15. Iacovella CR, Rogers RE et al (2010) Pair interaction potentials of colloids by extrapolation of confocal microscopy measurements of collective suspension structure. J Chem Phys 133:164903–164938CrossRefGoogle Scholar
  16. Keblinski P, Eastman JA et al (2005) Nanofluids for thermal transport. Mater Today 8(6):36–44CrossRefGoogle Scholar
  17. Kirby B (2009) Micro and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, LondonGoogle Scholar
  18. Kojic M, Milosevic M et al (2011) On diffusion in nanospace. J Serbian Soc Comput Mech 5(1):104–118Google Scholar
  19. Li Y, Je Zhou et al (2009) A review on development of nanofluidi preparation and characterization. Powder Technol 196:89–101CrossRefGoogle Scholar
  20. Malek K, Coppens M-O (2003) Knudsen self and Fickian diffusion in rough nanoporous media. J Chem Phys 119(5):2801–2811CrossRefGoogle Scholar
  21. Masliyah JH, Bhattacharjee S et al (2006) Electrokinetic and colloid transport phenomena. Wiley Online LibraryGoogle Scholar
  22. Mellaerts R, Jammaer JA et al (2008) Physical state of poorly water soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers: a case study with itraconazole and ibuprofen. Langmuir 24(16):8651–8659CrossRefGoogle Scholar
  23. Phillips RJ (2000) A hydrodynamic model for hindered diffusion of proteins and micelles in hydrogels. Biophys J 79(6):3350–3354CrossRefGoogle Scholar
  24. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117(1):1–19CrossRefGoogle Scholar
  25. Pusey PN (2011) Physics. Brownian motion goes ballistic. Science 332(6031):802–803CrossRefGoogle Scholar
  26. Sakamoto JH, van de Ven AL et al (2010) Enabling individualized therapy through nanotechnology. Pharmacol Res 62:57–89CrossRefGoogle Scholar
  27. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19. Google Scholar
  28. Serda RE, Mack A et al (2010) Cellular association and assembly of a multistage delivery system. Small 6(12):1329–1340CrossRefGoogle Scholar
  29. Son SJ, Lee SB (2006) Controlled gold nanoparticle diffusion in nanotubes: platform of partial functionalization and gold capping. J Am Chem Soc 128(50):15974–15975CrossRefGoogle Scholar
  30. Vanapalli SA, Iacovella CR et al (2008) Fluidic assembly and packing of microspheres in confined channels. Langmuir 24:3661–3670CrossRefGoogle Scholar
  31. Zhang X, Zhang C et al (2005) Optical spectra of a novel polyoxometalate occluded within modified MCM-41. J Phys Chem B 109(41):19156–19160CrossRefGoogle Scholar
  32. Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf A 173(1–3):1–38CrossRefGoogle Scholar
  33. Ziemys A, Kojic M et al (2011) Hierarchical modeling of diffusive transport through nanochannels by coupling molecular dynamics with finite element method. J Comput Phys 230(14):5722–5731CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • T. S. Mahadevan
    • 1
  • M. Milosevic
    • 2
  • M. Kojic
    • 1
    • 2
  • F. Hussain
    • 1
    • 3
  • N. Kojic
    • 4
  • R. Serda
    • 1
  • M. Ferrari
    • 1
  • A. Ziemys
    • 1
    Email author
  1. 1.The Department of NanomedicineThe Methodist Hospital Research InstituteHoustonUSA
  2. 2.Bioengineering Research and Development CenterUniversity Metropolitan BelgradeKragujevacSerbia
  3. 3.University of HoustonHoustonUSA
  4. 4.Center for Engineering in Medicine and Surgical ServicesMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations