Advertisement

Magnetron sputtered Cu3N/NiTiCu shape memory thin film heterostructures for MEMS applications

  • Navjot Kaur
  • Nitin Choudhary
  • Rajendra N. Goyal
  • S. Viladkar
  • I. Matai
  • P. Gopinath
  • S. Chockalingam
  • Davinder KaurEmail author
Research Paper

Abstract

In the present study, for the first time, Cu3N/NiTiCu/Si heterostructures were successfully grown using magnetron sputtering technique. Nanocrystalline copper nitride (Cu3N with thickness ~200 nm) thin films and copper nanodots were subsequently deposited on the surface of 2-μm-thick NiTiCu shape memory thin films in order to improve the surface corrosion and nickel release properties of NiTiCu thin films. Interestingly, the phase transformation from martensite phase to austenite phase has been observed in Cu3N/NiTiCu heterostructures with corresponding change in texture and surface morphology of top Cu3N films. Field emission scanning electron microscopy and atomic force microscope images of the heterostructures reveals the formation of 20-nm-sized copper nanodots on NiTiCu surface at higher deposition temperature (450 °C) of Cu3N. Cu3N passivated NiTiCu films possess low corrosion current density with higher corrosion potential and, therefore, better corrosion resistance as compared to pure NiTiCu films. The concentration of Ni released from the Cu3N/NiTiCu samples was observed to be much less than that of pure NiTiCu film. It can be reduced to the factor of about one-ninth after the surface passivation resulting in smooth, homogeneous and highly corrosion resistant surface. The antibacterial and cytotoxicity of pure and Cu3N coated NiTiCu thin films were investigated through green fluorescent protein expressing E. coli bacteria and human embryonic kidney cells. The results show the strong antibacterial property and non cytotoxicity of Cu3N/NiTiCu heterostructure. This work is of immense technological importance due to variety of BioMEMS applications.

Keywords

Magnetron sputtering NiTiCu Cu3Nanodots 

Notes

Acknowledgments

The financial support provided by Ministry of Communications and Information Technology (MIT), India, under Nanotechnology Initiative Program with Reference no. 20(11)/2007 VCND is highly acknowledged. The author Navjot Kaur is thankful to Ministry of human Resource and Development (MHRD), India for award of Junior Research Fellowship.

References

  1. Choudhary N, Kharat DK, Kaur D (2011a) Structural, electrical and mechanical properties of magnetron sputtered NiTi/PZT/TiOx thin film heterostructures. Surf Coat Technol 205:3387–3396. doi: 10.1016/j.surfcoat.2010.11.056 CrossRefGoogle Scholar
  2. Choudhary N, Kharat DK, Kaur D (2011b) Surface modification of NiTi/PZT heterostructure thin films using various protective layers for potential MEMS applications. Surf Coat Technol 206:1735–1743. doi: 10.1016/j.surfcoat.2011.08.056 CrossRefGoogle Scholar
  3. Cisse O, Savadogo O, Wu M, Yahia L′H (2002) Effect of surface treatment of NiTi alloy on its corrosion behavior in Hanks’ solution. J Biomed Mater Res 61:339–345. doi: 10.1002/jbm.10114 CrossRefGoogle Scholar
  4. Dhas NA, Raj CP, Gedanken A (1998) Synthesis, Characterization, and Properties of Metallic Copper Nanoparticles. Chem Mater 10:1446–1452. doi: 10.1002/chin.199832019 CrossRefGoogle Scholar
  5. Esteban-cubillo A, Pecharroman C, Aguilar E, Santaren J, Moya JS (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci 41:5208–5212. doi: 10.1007/s10853-006-0432-x Google Scholar
  6. Filip P, Lausmaa J, Musialek J, Mazanec K (2001) Structure and surface of TiN human implants. Biomaterials 32: 2131–2138. doi:  10.1016/S0142-9612(00)00404-X Google Scholar
  7. Fu Y, Du H, Zhang S (2003) Deposition of TiN layer on TiNi thin films to improve surface properties. Surf Coat Technol 167:129–136. doi: 10.1016/S0257-8972(02)00898-8 CrossRefGoogle Scholar
  8. Fukuda T, Saburi T, Chihara T, Tsuzuki Y (1995) Mechanism of B2-B19-B19′ transformation in shape memory Ti-Ni-Cu alloys. Mater Trans 36:1244–1248Google Scholar
  9. Gopinath P, Gogoi SK, Paul A, Chattopadhyay A, Ghosh SS (2008) Nanotechnology 19:075104. doi: 10.1088/0957-4484/19/7/075104
  10. Ishida A, Sato M, Ogawa K, Yamada K (2006) Shape memory behavior of Ti-Ni-Cu thin films. Mater Sci Eng A 438–440:683–686. doi: 10.1016/j.msea.2006.02.154 Google Scholar
  11. Ji A, Li C, Du Y, Ma L, Song R, Huang R, Cao Z (2005) Formation of a rosette pattern in copper nitride thin films via nanocrystals gliding. Nanotechnology 216:2092–2095. doi: 10.1088/0957-4484/16/10/019 CrossRefGoogle Scholar
  12. Kim KJ, Kim JH, Kang JH (2001) Structural and optical characterization of Cu3N films prepared by reactive RF magnetron sputtering. J Cryst Growth 222:767–772. doi: 10.1016/S0022-0248(00)00968-4 CrossRefGoogle Scholar
  13. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res 24:721–734. doi: 10.1002/jbm.820240607 CrossRefGoogle Scholar
  14. Kumar A, Kaur D (2009) Nanoindentation and corrosion studies of TiN/NiTi thin films for biomedical applications. Surf Coat Technol 204:1132–1136. doi: 10.1016/j.surfcoat.2009.06.002 CrossRefGoogle Scholar
  15. Kumar A, Singh D, Goyal RN, Kaur D (2009a) Fabrication and nanoindentation properties of TiN/NiTi thin films and their applications in electrochemical sensing. Talanta 78:964–969. doi: 10.1016/j.talanta.2009.01.005 CrossRefGoogle Scholar
  16. Kumar A, Singh D, Kaur D (2009b) Grain size effect on structural, electrical and mechanical properties of NiTi thin films deposited by magnetron co-sputtering. Surf Coat Technol 203:1596–1603. doi: 10.1016/j.surfcoat.2008.12.005 CrossRefGoogle Scholar
  17. Kumar A, Singh D, Kaur D (2012) Variation in phase transformation paths of NiTi films as a function of film thickness. Sensors Actuators A 178(2012):57–63. doi: 10.1016/j.sna.2012.02.014 CrossRefGoogle Scholar
  18. Liu KT, Duh JG (2007) Effect of aluminum on the corrosion behavior of NiTiAl thin films Appl. Surf Sci 253:5268–5273. doi: 10.1016/j.apsusc.2006.11.046 CrossRefGoogle Scholar
  19. Moberly WJ, Proft JL, Duerig TW, Sinclair R (1990) Twinless martensite in TiNiCu shape memory alloys. Mater Sci Forum 56–58:605–610Google Scholar
  20. Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, Hasan MM (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60:75–80. doi: 10.1007/s13213-010-0015-6 CrossRefGoogle Scholar
  21. Rondelli G, Vicentini B (2002) Effect of copper on the localized corrosion resistance of Ni–Ti shape memory alloy. Biomaterials 23:639–644. doi: 10.1016/S0142-9612(01)00142-9 CrossRefGoogle Scholar
  22. Tan L, Dodd RA, Crone WC (2003) Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation. Biomaterials 24:3931–3939. doi: 10.1016/S0142-9612(03)00271-0 CrossRefGoogle Scholar
  23. Vishnoi R, Kaur D (2010a) Size dependence of martensite transformation temperature in nanostructured Ni–Mn–Sn ferromagnetic shape memory alloy thin films. Surf Coat Technol 204:3773–3782. doi: 10.1016/j.surfcoat.2010.04.053 CrossRefGoogle Scholar
  24. Vishnoi R, Kaur D (2010b) Structural and magnetic properties of magnetron sputtered Ni–Mn–Sn ferromagnetic shape memory alloy thin films. J Appl Phys 107:103907. doi:  10.1063/1.3393961 Google Scholar
  25. Vishnoi R, Kaur D (2011) Exchange bias behaviour in magnetron sputtered Ni49.8Mn36.1 Sn13.9 ferromagnetic shape memory alloy thin film. J Alloys Compd 509:12833–12837. doi: 10.1016/j.jallcom.2010.11.133 CrossRefGoogle Scholar
  26. Vishnoi R, Singhal R, Kaur D (2011) Thickness dependent phase transformation of magnetron-sputtered Ni–Mn–Sn ferromagnetic shape memory alloy thin films. J Nanopart Res 13:3975–3990. doi: 10.1007/s11051-011-0321-3 CrossRefGoogle Scholar
  27. Wu SK, Chu CL, Lin HC (1997) Ion nitriding of TiNi shape memory alloys I. Nitriding parameters and microstructure characterization. Surf Coat Technol 92:197–205. doi: 10.1016/S0257-8972(97)00100-X CrossRefGoogle Scholar
  28. Yang M, Zhu JJ (2003) Spherical hollow assembly composed of Cu2O nanoparticles. J Cryst Growth 256:134–138. doi: 10.1016/S0022-0248(03)01298-3 CrossRefGoogle Scholar
  29. Yeh MS, Yang YS, Lee YP, Lee HF, Yeh YH, Yeh CS (1999) Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-propanol. J Phys Chem B 103:6851–6857. doi: 10.1021/jp984163 CrossRefGoogle Scholar
  30. Zhao Y, Zhu JJ, Hong JM, Bian N, Chen HY (2004) Microwave-induced polyol- process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur J Inorg Chem 20:4072–4080. doi: 10.1002/ejic.200400258 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Navjot Kaur
    • 1
  • Nitin Choudhary
    • 1
  • Rajendra N. Goyal
    • 2
  • S. Viladkar
    • 1
  • I. Matai
    • 3
  • P. Gopinath
    • 3
  • S. Chockalingam
    • 4
  • Davinder Kaur
    • 1
    Email author
  1. 1.Functional Nanomaterials Research Lab, Department of Physics and Centre of NanotechnologyIndian Institute of Technology Roorkee, RoorkeeRoorkeeIndia
  2. 2.Department of ChemistryIndian Institute of Technology, RoorkeeRoorkeeIndia
  3. 3.Centre for NanotechnologyIndian Institute of Technology, RoorkeeRoorkeeIndia
  4. 4.Department of BiotechnologyIndian Institute of Technology, GuwahatiGuwahatiIndia

Personalised recommendations