Skip to main content
Log in

Influence of the cation alkyl chain length of imidazolium-based room temperature ionic liquids on the dispersibility of TiO2 nanopowders

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The influence of the length of the cation alkyl chain on the dispersibility by ultrasonic treatment of TiO2 nanopowders in hydrophilic imidazolium-based room temperature ionic liquids was studied for the first time by dynamic light scattering and advanced rheology. TiO2 nanopowders had been synthesized by chemical vapor synthesis (CVS) under varied conditions leading to two different materials. A commercial nanopowder had been used for comparison. Characterizations had been done using transmission electron microscopy, X-ray diffraction, nitrogen adsorption with BET analysis, and FT-IR spectroscopy. Primary particle sizes were about 6 and 8 nm for the CVS-based and 26 nm for the commercial materials. The particle size distribution in the dispersion was strongly influenced by the length of the cation alkyl chain for all the investigated powders with different structural characteristics and concentrations in the dispersion. It was found that an increase of the alkyl chain length was beneficial, leading to a narrowing of the particle size distribution and a decrease of the agglomerate size in dispersion. The smallest average nanoparticle sizes in dispersion were around 30 nm. Additionally, the surface functionality of the nanoparticles, the concentration of the solid material in the liquid, and the period of ultrasonic treatment control the dispersion quality, especially in the case of the ionic liquids with the shorter alkyl chain. The influence of the nanopowders characteristics on their dispersibility decreases considerably with increasing cation alkyl chain length. The results indicate that ionic liquids with adapted structure are candidates as absorber media for nanoparticles synthesized in gas phase processes to obtain liquid dispersions directly without redispergation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akurati KK, Bahattacharya SS, Winterer M, Hahn H (2006) Synthesis, characterization and sintering of nanocrystalline titania powders produced by chemical vapor synthesis. J Phys D Appl Phys 39:2248–2254. doi:10.1088/0022-3727/39/10/037

    Article  CAS  Google Scholar 

  • Arantes TM, Leao KV, Tavares MBI, Ferreira AG, Longo E, Camargo ER (2009) NMR study of styrene-butadiene rubber (SBR) and TiO2 nanocomposites. Polym Testing 28:490–494. doi:10.1016/j.polymtesting.2009.03.011

    Article  CAS  Google Scholar 

  • Bonhôte P, Dias AP, Papagiorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178. doi:0020-1669/96/1335-1168

    Article  Google Scholar 

  • Branco LC, Rosa JN, Moura Ramones JJ, Alfonsi CAM (2002) Preparation and characterization of new room temperature ionic liquids. Chem Eur J 8:3671–3677. doi:10.1002/1521-3765(20020816

    Article  CAS  Google Scholar 

  • Burell GL, Dunlop NF, Separovic F (2010) Non-Newtonian viscous shear thinning in ionic liquids. Soft Matter 6:2080–2086. doi:10.1039/b916049n

    Article  Google Scholar 

  • Buzzeo MC, Evans RG, Compton RG (2004) Non-haloaluminate room temperature ionic liquids in electrochemistry– a review. Chem Phys Chem 5:1106–1120. doi:10.1002/cphc.200301017

    Article  CAS  Google Scholar 

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2859–2891. doi:10.1021/cr0500535

    Google Scholar 

  • Chiappe C, Pieracini D (2005) Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem 8:275–297. doi:10.1002/poc.836

    Article  Google Scholar 

  • Djenadic R, Winterer M (2012) Nanoparticles from the gasphase: formation, structure, properties. In: Lorke A, Winterer M, Schmechel R, Schulz C (Eds.), Springer, New York, in print

  • Dupont J (2011) From molten salts to ionic liquids: a “nano” journey. Acc Chem Res 44:1223–1231. doi:10.1021/ar2000937

    Article  CAS  Google Scholar 

  • Dzyuba S, Bartsch RA (2002) Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and Bis(trifluoromethyl-sulfonyl)imides on physical properties of ionic liquids. Chem Phys Chem 3:161–166. doi:10.1002/1439-7641(20020215

    Article  CAS  Google Scholar 

  • Elim HI, Ji V, Yuwono AH, Xue JM, Wang J (2003) Ultrafast optical nonlinearity in poly(methylmethacrylate)-TiO2 nanocomposites. Appl Phys Lett 82:2691–2693. doi:10.1063/1.1568544

    Article  CAS  Google Scholar 

  • Endres F, Zein El Abedin S (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8:2101–2116. doi:10.1039/B600519P

    Article  CAS  Google Scholar 

  • Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237. doi:10,1021/cr068040u

    Article  CAS  Google Scholar 

  • Hapiot P, Lagrost C (2008) Electrochemical reactivity in room temperature ionic liquids. Chem Rev 108:2238–2264. doi:10.1021/cr068686

    Article  CAS  Google Scholar 

  • Holbrey JD, Seddon KR (1999) The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic crystals, J Chem Soc Dalton Trans. 2133–2139. doi:10.1039/A902818H

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticles dispersions for toxicological studies. J Nanopart Res 11:77–89. doi:10.1007/s11051-008-9446-4

    Article  CAS  Google Scholar 

  • Kwong CY, Choy WCH, Djurisic AB, Chui PC, Cheng KW, Chan WK (2004) Poly(3-hexylthiophene): TiO2 nanocomposites for solar cell applications. Nanotechnol 15:1156–1161. doi:10.1088/0957-4484/15/9/008

    Article  CAS  Google Scholar 

  • Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Progr Polym Sci 34:431–448. doi:10.1016/j.progpolymsci.2008.12.001

    Article  CAS  Google Scholar 

  • Mandzy N, Grulke E, Druffel T (2005) Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol 160:121–126. doi:10.1016/j.powtec.2005.08.020

    Article  CAS  Google Scholar 

  • Marsh KN, Deev A, Wu ACT, Tran E, Klamt A (2002) Room temperature ionic liquids as replacement for convenitional solvents–a review, Korean J. Chem Eng 19:357–362.

    CAS  Google Scholar 

  • Meng X, Zhang Z, Luo N, Cao S, Yang M (2011) Transparent poly(methylmethacrylate)/TiO2 nanocomposites for UV-shielding applications. Polym Sci Ser A 53:977–983. doi:10.1134/S096554X11100099

    Article  CAS  Google Scholar 

  • Nichols G, Byard S, Bloxham MJ, Botteril J, Dawson NJ, Dennis A, Diart V, North NC, Sherwood JD (2002) A review of the terms agglomerate and aggregate with recommendation for nomenclature used in powder and particles characterization. J Pharm Sci 91:2103–2109. doi:10.1002/jps.10191

    Article  CAS  Google Scholar 

  • Nussbaumer RJ, Caseri WR, Smith P, Tervorst T (2003) Polymer–TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromol Mater Eng 288:44–49. doi:10.1002/mane.200290032

    Article  CAS  Google Scholar 

  • Pratsinis SE (1988) Flame aerosol synthesis of ceramic powders. Prog Energ Combust Sci 24:197–219

    Article  Google Scholar 

  • Reddy RG (2006) Ionic liquids: how well do we know them? J Phase Eq Diffusion 27:210–211. doi:10.1361/154770306x110087

    Article  CAS  Google Scholar 

  • Sakhna OV, Goldenberg LM, Stumpe J, Smirnov TN (2007) Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for high effective and UV-stable volume halograms. Nanotechnol 18: 105704 (7p.). doi:10.1088/0597-4484/18/10/105704

  • Seddon KR (1997) Ionic liquids for clean technology. J Chem Tech Biotechnol 68:351–356

    Article  CAS  Google Scholar 

  • Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5:361–363. doi:10.1039/B4400A

    Article  CAS  Google Scholar 

  • Tao P, Li Y, Rungta A, Viswanath A, Gao J, Benicewicz BC, Siegel RW, Schadler LS (2011) TiO2 nanocomposites with high refractive index and transparency. J Mater Chem 21:18623–18629. doi:10.1039/c1jm13093e

    Article  CAS  Google Scholar 

  • Tokuda H, Hayamizu K, Ishii K, Abu Bin Hasan Susan M, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids.I. Variation of anionic species. J Phys Chem B 108: 16593. doi:10.1021/jp047480r

  • Tokuda H, Hayamizu K, Ishii K, Abu Bin Hasan Susan M, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids.2. Variation of alkyl chain length in imidazolium cation. J.Phys Chem. B 109:6103–6110. doi:10.1021/jp044626d

    Article  CAS  Google Scholar 

  • Torimoto T, Tsuda T, Okazaki K, Kuwabata S (2010) New frontiers in materials science opened by ionic liquids. Adv Mater 22:1196–1221. doi:10.1002/adma.200902184

    Article  CAS  Google Scholar 

  • Trung VQ, Huyen DN (2009) Synthesis, properties and application of polyindole/TiO2 nanocomposites. J Phys Conf Ser 187: 012058 (6p.). doi:10.1088/1742-6596/187/1/012058

  • Ueno K, Watanabe M (2011) From colloidal stability in ionic liquids to advanced soft materials using unique media. Langmuir 27:9105–9115. doi:10.1021/la103942f

    Article  CAS  Google Scholar 

  • Ueno K, Inaba A, Kondoh M, Watanabe M (2008) Colloidal stability of bare and polymer-grafted silica nanoparticles in ionic liquids. Langmuir 24:5253–5259. doi:10.1021/la704066v

    Article  CAS  Google Scholar 

  • Welton T (1999) Room temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083. doi:10.1021/cr980032t

    Article  CAS  Google Scholar 

  • Winterer M (2002) Nanocrystalline ceramics–synthesis and structure, vol 53., Springer Series in Materials ScienceSpringer, Heidelberg. doi:3-540-43433-X

    Book  Google Scholar 

  • Wittmar A, Ulbricht M (2012) Dispersions of various titania nanoparticles in two different ionic liquids. Ind Eng Chem Res 51:8425–8433. doi:10.1021/ie203010x

    Article  CAS  Google Scholar 

  • Wittmar A, Ruiz-Abad D, Ulbricht M (2012) Dispersions of silica nanoparticles in ionic liquids investigated with advanced rheology. J Nanoparticle Res 14:651–660. doi:10.1007/s11051-011-0651-1

    Article  Google Scholar 

  • Ye C, Liu W, Chen Y, Yu L (2001) Room-temperature ionic liquids: a novel versatile lubricant. Chem Commun 21:2244–2245. doi:10.1039/b106935g

    Article  Google Scholar 

  • Zhang H, Hong K, Mays JW (2002) Synthesis of block copolymers of styrene and methacrylate by conventional free radical polymerization in room temperature ionic liquids. Macromolecules 35:5738–5741. doi:10.1021/ma025518x

    Article  CAS  Google Scholar 

  • Zhao D, Wu M, Kou Y, Min E (2002) Ionic liquids: applications in catalysis. Cat Today 74:157–189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support through the NanoEnergieTechnikZentrum (NETZ), an application-focused research project partially financed by the state of North Rhine-Westphalia and the European Union, is kindly acknowledged. We gratefully acknowledge the collaboration with Dr. W. Meyer-Zaika (TEM characterization) at the University of Duisburg-Essen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Ulbricht.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1983kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittmar, A., Gajda, M., Gautam, D. et al. Influence of the cation alkyl chain length of imidazolium-based room temperature ionic liquids on the dispersibility of TiO2 nanopowders. J Nanopart Res 15, 1463 (2013). https://doi.org/10.1007/s11051-013-1463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1463-2

Keywords

Navigation