Skip to main content
Log in

Synthesis of non-spherical CdSe nanocrystals

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Non-spherical CdSe quantum dots were synthesized through high temperature reduction of cadmium and selenium in the presence of TOP (tri-n-octylphosphine) and TOPO (tri-n-octylphosphine oxide). The high affinity of phosphine oxide to the surface of CdSe nanocrystals typically leads to the formation of spherical particles with diameters between 1.5 and 10 nm. However, with lower temperatures and longer reaction times relative to conventional synthesis techniques, the formation of non-spherical nanocrystals dominated. The three reaction temperatures that were studied were 230, 250, and 270 °C. Results verify the need to quench CdSe nanocrystals immediately following the injection of selenium dissolved in TOP (TOPSe) if spherical particles are the desired shape. Nanocrystal shape evolves from sphere to rectangle to hexagon or triangle as the reaction time is extended regardless of temperature. The highest yield of rectangular particles (~89 %) was achieved while maintaining a temperature of 250 °C for 20 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Article  CAS  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  • Caruge JM, Halpert JE, Wood V, Bulovic V, Bawendi MG (2008) Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat Photonics 2(4):247–250

    Article  CAS  Google Scholar 

  • Coe S, Woo WK, Bawendi M, Bulovic V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420(6917):800–803

    Article  CAS  Google Scholar 

  • Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Article  CAS  Google Scholar 

  • Goldman ER, Medintz IL, Whitley JL, Hayhurst A, Clapp AR, Uyeda HT, Deschamps JR, Lassman ME, Mattoussi H (2005) A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. J Am Chem Soc 127(18):6744–6751

    Article  CAS  Google Scholar 

  • Grebinski JW, Hull KL, Zhang J, Kosel TH, Kuno M (2004) Solution-based straight and branched CdSe nanowires. Chem Mater 16(25):5260–5272

    Article  CAS  Google Scholar 

  • Ithurria S, Bousquet G, Dubertret B (2011) Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J Am Chem Soc 133:3070–3077

    Article  CAS  Google Scholar 

  • Jasieniak J, Smith L, van Embden J, Mulvaney P, Califano M (2009) Re-examination of the size-dependent absorption properties of CdSe quantum dots. J Phys Chem C 113(45):19468–19474

    Article  CAS  Google Scholar 

  • Joo J, Son JS, Kwon SG, Yu JH, Hyeon T (2006) Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J Am Chem Soc 128:5632–5633

    Article  CAS  Google Scholar 

  • Li Z, Peng X (2011) Size/shape-controlled synthesis of colloidal CdSe quantum disks: ligand and temperature effects. J Am Chem Soc 133:6578–6586

    Article  CAS  Google Scholar 

  • Liu HM, Tao H, Yang TB, Kong LB, Qin DH, Chen JW (2011) A surfactant-free recipe for shape-controlled synthesis of CdSe nanocrystals. Nanotechnology 22(4):045604

    Article  Google Scholar 

  • Manna L, Scher EC, Alivisatos AP (2000) Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 122(51):12700–12706

    Article  CAS  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  CAS  Google Scholar 

  • Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  • Peng XG (2003) Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv Mater 15(5):459–463

    Article  CAS  Google Scholar 

  • Peng ZA, Peng XG (2001a) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184

    Article  CAS  Google Scholar 

  • Peng ZA, Peng XG (2001b) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123(7):1389–1395

    Article  CAS  Google Scholar 

  • Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404(6773):59–61

    Article  CAS  Google Scholar 

  • Peng Q, Dong YJ, Deng ZX, Li YD (2002) Selective synthesis and characterization of CdSe nanorods and fractal nanocrystals. Inorg Chem 41(20):5249–5254

    Article  CAS  Google Scholar 

  • Puntes VF, Zanchet D, Erdonmez CK, Alivisatos AP (2002) Synthesis of hcp-Co nanodisks. J Am Chem Soc 124(43):12874–12880

    Article  CAS  Google Scholar 

  • Qian C, Kim F, Ma L, Tsui F, Yang P, Liu J (2004) Solution-phase synthesis of single-crystalline iron phosphide nanorods/nanowires. J Am Chem Soc 126(4):1195–1198

    Article  CAS  Google Scholar 

  • Qu LH, Peng ZA, Peng XG (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1(6):333–337

    Article  CAS  Google Scholar 

  • Shieh F, Saunders AE, Korgel BA (2005) General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J Phys Chem B 109(18):8538–8542

    Article  CAS  Google Scholar 

  • Smith AM, Duan HW, Mohs AM, Nie SM (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60(11):1226–1240

    Article  CAS  Google Scholar 

  • Snee PT, Somers RC, Nair G, Zimmer JP, Bawendi MG, Nocera DG (2006) A ratiometric CdSe/ZnS nanocrystal pH sensor. J Am Chem Soc 128(41):13320–13321

    Article  CAS  Google Scholar 

  • Steiner D, Azulay D, Aharoni A, Salant A, Banin U, Millo O (2009) Photoconductivity in aligned CdSe nanorod arrays. Phys Rev B 80:195308–195314

    Article  Google Scholar 

  • Xi LF, Lam YM (2007) Synthesis and characterization of CdSe nanorods using a novel microemulsion method at moderate temperature. J Colloid Interface Sci 316(2):771–778

    Article  CAS  Google Scholar 

  • Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4(11):826–831

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Institute for Critical Technology and Applied Science (ICTAS) at Virginia Tech for postdoctoral associate support (O.I.) and the National Science Foundation Graduate Research Fellowship Program for graduate research support (K.Z.). Authors also acknowledge ICTAS NCFL (Nanoscale Characterization and Fabrication Laboratory) for providing access to TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga S. Ivanova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5305 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, O.S., Zimmermann, K.A., Tuggle, J.R. et al. Synthesis of non-spherical CdSe nanocrystals. J Nanopart Res 15, 1382 (2013). https://doi.org/10.1007/s11051-012-1382-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1382-7

Keywords

Navigation