Skip to main content
Log in

Size-dependent motion of bio-functionalized magnetic nanoparticle clusters under a rotating magnetic field

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, we investigated the behavior of biofunctionalized, magnetic nanoparticle clusters under rotating magnetic fields in an aqueous solution to facilitate the use of such nanoparticles in biomedical applications. We found that two modes of motion for clusters of the nanoparticles exist. These two modes of motion exhibited by the clusters were rotation and oscillation, depending on the size of the cluster. Due to the interaction between the rotating magnetic field and the net magnetic dipole moment, the clusters were subjected to a forced vibration. A critical diameter range for the magnetic clusters was defined that may be used to distinguish between the rotation and oscillation of clusters. Furthermore, the characteristics of size dependence of the clusters’ motion were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lübbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6684

    CAS  Google Scholar 

  • Arruebo M, Fernandez-Pacheco R, Ibarra MR, Santamaria J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32

    Article  Google Scholar 

  • Cēbers A, Javaitis I (2004) Bending of flexible magnetic rods. Phys. Rev. E 69:021404

    Google Scholar 

  • Cēbers A, Ozols M (2006) Dynamics of an active magnetic particle in a rotating magnetic field. Phys Rev E 73:021505

    Article  Google Scholar 

  • Domínguez-García P, Melle S, Calderón OG, Rubio MA (2005) Doublet dynamics of magnetizable particles under frequency modulated rotating fields. Colloids Surf A 270:270–271

    Article  Google Scholar 

  • Enpuku K, Minotani T, Hotta M, Nakahodo A (2001) Application of high Tc SQUID magnetometer to biological immunoassays. IEEE Trans Appl Supercon 11:661–664

    Article  Google Scholar 

  • Enpuku K, Kuroda D, Ohba A, Yang TQ, Yoshinaga K, Nakahara T, Kuma H, Hamasaka N (2003) Biological immunoassay utilizing magnetic marker and high tc superconducting quantum interference device magnetometer. Jpn J Appl Phys 42:L1436–L1438

    Article  CAS  Google Scholar 

  • Enpuku K, Inoue K, SoeJima K, Yoshinaga K, Kuma H, Hamasaki N (2005) Magnetic immunoassays utilizing magnetic markers and a high-Tc SQUID. IEEE Trans Appl Supercond 15:660–663

    Article  CAS  Google Scholar 

  • Helgesen G, Pieranski P, Skjeltorp AT (1990a) Nonlinear phenomena in systems of magnetic holes. Phys Rev A 42:7271–7283

    Article  Google Scholar 

  • Helgesen G, Pieranski P, Skjeltorp AT (1990b) Dynamic behavior of simple magnetic hole systems. Phys Rev Lett 64:1425–1429

    Article  Google Scholar 

  • Hong CY, Wu CC, Chiu YC, Yang SY, Horng HE, Yang HC (2006) Magnetic susceptibility reduction method for magnetically labeled immunoassay. Appl Phys Lett 88:212512

    Article  Google Scholar 

  • Horng HE, Yang SY, Hong CY, Liu CM, Tsai PS, Yang HC, Wu CC (2006) Biofunctionalized magnetic nanoparticles for high-sensitivity immunomagnetic detection of human C-reactive protein. Appl Phys Lett 88:252506

    Article  Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  CAS  Google Scholar 

  • Kötitz R, Matz H, Trahms L, Weitschies W, Rheinländer T, Semmler W, Bunte T (1997) SQUID based remanence measurements for immunoassays. IEEE Trans Appl Supercond 7:3678–3681

    Article  Google Scholar 

  • Lee SK, Myers WR, Grossmanl HL, Cho HM, Chemla YR, Clarke J (2002) Magnetic gradiometer based on a high-transition temperature superconducting quantum interference device for improved sensitivity of a biosensor. Appl Phys Lett 81:3094–3097

    Article  CAS  Google Scholar 

  • Melle S, Calderón OG, Fuller GG, Rubio MA (2002) Polarizable particle aggregation under rotating magnetic fields using scattering dichroism. J Colloid Interface Sci 247:200–209

    Article  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181

    Article  CAS  Google Scholar 

  • Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultra small super paramagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–422

    Article  CAS  Google Scholar 

  • Tartaj P, Morales MDP, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine Phys. D-Appl Phys 36:R182–R197

    Article  CAS  Google Scholar 

  • Todd P, Cooper RP, Doyle JF, Dunn S, Vellinger J, Deuser MS (2001) Multistage magnetic particle separator. J Magn Magn Mater 225:294–300

    Article  CAS  Google Scholar 

  • Weitschies W, Kötitz R, Bunte T, Trahms L (1997) Determination of relaxing or remanent nanoparticle magnetization provides a novel binding-specific technique for the evaluation of immunoassays. Pharm Pharmacol Lett 7:1–7

    Google Scholar 

  • Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. The Lancet Oncol 3:487–497

    Article  CAS  Google Scholar 

  • Yang SY, Wang WC, Lan CB, Chen CH, Chieh JJ, Horng HE, Hong CY, Yang HC, Tsai CP, Yang CY (2010) Magnetically enhanced high-specificity virus detection using bio-activated magnetic nanoparticles with antibodies as labeling markers. J Virol Methods 164:14–18

    Article  CAS  Google Scholar 

  • Zhao M, Beauregard DA, Loizoul L, Davletov B, Brindle KM (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7:1241–1244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Council of Taiwan under grant number 99-2221-E-005-041-MY3 and by National Chung Hsing University under grant number 100S0901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Yih Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, JC., Tang, CC. & Hong, CY. Size-dependent motion of bio-functionalized magnetic nanoparticle clusters under a rotating magnetic field. J Nanopart Res 15, 1378 (2013). https://doi.org/10.1007/s11051-012-1378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1378-3

Keywords

Navigation