Bottom-up processing of thermoelectric nanocomposites from colloidal nanocrystal building blocks: the case of Ag2Te–PbTe

Abstract

Nanocomposites are highly promising materials to enhance the efficiency of current thermoelectric devices. A straightforward and at the same time highly versatile and controllable approach to produce nanocomposites is the assembly of solution-processed nanocrystal building blocks. The convenience of this bottom-up approach to produce nanocomposites with homogeneous phase distributions and adjustable composition is demonstrated here by blending Ag2Te and PbTe colloidal nanocrystals to form Ag2Te–PbTe bulk nanocomposites. The thermoelectric properties of these nanocomposites are analyzed in the temperature range from 300 to 700 K. The evolution of their electrical conductivity and Seebeck coefficient is discussed in terms of the blend composition and the characteristics of the constituent materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    Notice that there is some controversy in the nomenclature of the different Ag2Te phases. We use α to denote the low-temperature Ag2Te phase and β for the high-temperature one.

References

  1. Allgaier RS (1961) Valence bands in lead telluride. J Appl Phys 32:2185–2189

    Article  CAS  Google Scholar 

  2. Bian Z, Zebarjadi M, Singh R et al (2007) Cross-plane Seebeck coefficient and Lorenz number in superlattices. Phys Rev B 76:205311

    Article  Google Scholar 

  3. Borisova LD (1979) Thermoelectric properties of impurity doped PbTe. Physica Status Solidi (a) 53:K19–K22

    Article  CAS  Google Scholar 

  4. Breschi R, Camanzi A, Fano V (1982) Defects in PbTe single crystals. J Cryst Growth 58:399–408

    Article  CAS  Google Scholar 

  5. Bux SK, Fleurial J-P, Kaner RB (2010) Nanostructures materials for thermoelectric applications. Chem Comm 46:8311–8324

    Article  CAS  Google Scholar 

  6. Cahill DG, Ford WK, Goodson KE et al (2003) Nanoscale thermal transport. J Appl Phys 93:793–818

    Article  CAS  Google Scholar 

  7. Capps J, Drymiotis F, Lindsey S, Tritt TM (2010) Significant enhanced of the dimensionless thermoelectric figure of merit binary Ag2Te. Phyl Mag Lett 90:677–681

    Article  CAS  Google Scholar 

  8. Capps J, Ma B, Drye T et al (2011) The effect of Ag concentration on the structural, electrical and thermal transport behavior of Pb:Te:Ag:Se mixtures and improvement of thermoelectric performance via Cu doping. J Alloy Compd 509:1544–1549

    Article  CAS  Google Scholar 

  9. Cornett JE, Rabin O (2011) Thermoelectric figure of merit calculations for semiconducting nanowires. Appl Phys Lett 98:182104–182104–3

    Google Scholar 

  10. Crocker AJ, Rogers LM (1967) Interpretation of the Hall coefficient, electrical resistivity and Seebeck coefficient of p-type lead telluride. Br J Appl Phys 18:563–573

    Article  CAS  Google Scholar 

  11. Dalpian GM, Chelikowsky JR (2006) Self-purification in semiconductor nanocrystals. Phys Rev Lett 96:226802

    Article  Google Scholar 

  12. Dalven R, Gill R (1966) Energy gap in β-Ag2Te. Phys Rev 143:666–670

    Article  CAS  Google Scholar 

  13. Dalven R, Gill R (1967) Electrical properties of β-Ag2Te and β-Ag2Se from 4.2° to 300°K. J Appl Phys 38:753–756

    Article  CAS  Google Scholar 

  14. Das VD, Karunakaran D (1984) Thermoelectric studies on semiconducting Ag2Te thin films: temperature and dimensional effects. Phys Rev B 30:2036–2041

    Article  CAS  Google Scholar 

  15. Dashevsky Z, Kreizman R, Dariel MP (2005) Physical properties and inversion of conductivity type in nanocrystalline PbTe films. J Appl Phys 98:094309–094309–5

    Google Scholar 

  16. Dingle R, Störmer HL, Gossard AC, Wiegmann W (1978) Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl Phys Lett 33:665–667

    Article  CAS  Google Scholar 

  17. Dresselhaus MS, Chen G, Tang MY et al (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053

    Article  CAS  Google Scholar 

  18. Erwin SC, Zu L, Haftel MI et al (2005) Doping semiconductor nanocrystals. Nature 436:91–94

    Article  CAS  Google Scholar 

  19. Faleev SV, Léonard F (2008) Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys Rev B 77:214304

    Article  Google Scholar 

  20. Feldman JL, Singh DJ, Mazin II, Mandrus D, Sales BC (2000) Lattice dynamics and reduced thermal conductivity of filled skutterudites. Phys Rev B 61:R9209–R9212

    Article  CAS  Google Scholar 

  21. Fujikane M, Kurosaki K, Muta H, Yamanaka S (2005a) Thermoelectric properties of α- and β-Ag2Te. J Alloy Compd 393:299–301

    Article  CAS  Google Scholar 

  22. Fujikane M, Kurosaki K, Muta H, Yamanaka S (2005b) Electrical properties of α- and β-Ag2Te. J Alloy Compd 387:297–299

    Article  CAS  Google Scholar 

  23. Gascoin F, Ottensmann S, Stark D, Haile SM, Snyder GJ (2005) Zintl phases as thermoelectric materials: tuned transport properties of the compounds CaxYb1-xZn2Sb2. Adv Funct Mater 15:1860–1864

    Article  CAS  Google Scholar 

  24. Goldsmid H, Sharp J (1999) Estimation of the thermal band gap of a semiconductor from seebeck measurements. J Electron Mater 28:869–872

    Article  CAS  Google Scholar 

  25. Gorsse S, Bauer Pereira P, Decourt R, Sellier E (2010) Microstructure engineering design for thermoelectric materials: an approach to minimize thermal diffusivity. Chem Mater 22:988–993

    Article  CAS  Google Scholar 

  26. Gorsse S, Bellanger P, Brechet Y, Sellier E, Umarji A, Ail U, Decourt R (2011) Nanostructuration via solid state transformation as a strategy for improving the thermoelectric efficiency of PbTe alloys. Acta Mater 59:7425–7437

    Article  CAS  Google Scholar 

  27. Grekov Y, Shlyakhov T, Semikolenova N (1997) Inversion of the conduction type of epitaxial films of PbSnTe solid solutions under the influence of laser irradiation at subthreshold power. Semiconductors 31:844–846

    Article  Google Scholar 

  28. Heremans JP, Thrush CM, Morelli DT (2004) Thermopower enhancement in lead telluride nanostructures. Phys Rev B 70:115334

    Article  Google Scholar 

  29. Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47:12727–12731

    Article  CAS  Google Scholar 

  30. Hsu KF, Loo S, Guo F et al (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303:818–821

    Article  CAS  Google Scholar 

  31. Humphrey TE, Linke H (2005) Reversible thermoelectric nanomaterials. Phys Rev Lett 94:096601

    Article  CAS  Google Scholar 

  32. Ibáñez M, Guardia P, Shavel A et al (2011) Growth kinetics of asymmetric Bi2S3 nanocrystals: size distribution focusing in nanorods. J Phys Chem C 115:7947–7955

    Article  Google Scholar 

  33. Ibáñez M, Cadavid D, Zamani R et al (2012a) Composition control and thermoelectric properties of quaternary chalcogenide nanocrystals: the case of stannite Cu2CdSnSe4. Chem Mater 24:562–570

    Article  Google Scholar 

  34. Ibáñez M, Zamani R, LaLonde A et al (2012b) Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. J Am Chem Soc 134:4060–4063

    Article  Google Scholar 

  35. Ibáñez M, Zamani R, Li W, Shavel A, Arbiol J, Morante JR, Cabot A (2012c) Extending the nanocrystal synthesis control to quaternary compositions. Cryst Growth Des 12:1085–1090

    Article  Google Scholar 

  36. Ibáñez M, Zamani R, Li W et al (2013a) Chem Mater. doi:10.1021/cm303252q

  37. Ibáñez M, Cadavid D, Anselmi‐Tamburini U et al (2013b) J Mater Chem A. doi:10.1039/c2ta00419d

  38. Ko D-K, Urban JJ, Murray CB (2010) Carrier distribution and dynamics of nanocrystal solids doped with artificial atoms. Nano Lett 10:1842–1847

    Article  CAS  Google Scholar 

  39. Kovalenko MV, Spokoyny B, Lee J-S et al (2010) Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. J Am Chem Soc 132:6686–6695

    Article  CAS  Google Scholar 

  40. Lan Y, Minnich AJ, Chen G, Ren Z (2010) Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv Funct Mater 20:357–376

    Article  CAS  Google Scholar 

  41. Lensch-Falk JL, Sugar JD, Hekmaty MA, Medlin DL (2010) Morphological evolution of Ag2Te precipitates in thermoelectric PbTe. J Alloy Compd 504:37–44

    Article  CAS  Google Scholar 

  42. Li W, Shavel A, Guzman R et al (2011) Morphology evolution of Cu2 − xS nanoparticles: from spheres to dodecahedrons. Chem Commun 47:10332

    Article  CAS  Google Scholar 

  43. Martin J, Nolas GS, Zhang W, Chen L (2007) PbTe nanocomposites synthesized from PbTe nanocrystals. Appl Phys Lett 90:222112

    Article  Google Scholar 

  44. Martin J, Wang L, Chen L, Nolas GS (2009) Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys Rev B 79:115311

    Article  Google Scholar 

  45. Max-Planck-Gesellschaft zur Förderung der Wissenschaften (1973) Gmelin Handbuch der anorganischen Chemie, 8. völlig neu bearbeitete Aufl. Springer, Berlin

  46. Medlin DL, Snyder GJ (2009) Interfaces in bulk thermoelectric materials: a review for current opinion in colloid and interface science. Curr Opin Colloid Interface Sci 14:226–235

    Article  CAS  Google Scholar 

  47. Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479

    Article  CAS  Google Scholar 

  48. Norris DJ, Efros AL, Erwin SC (2008) Doped nanocrystals. Science 319:1776–1779

    Article  CAS  Google Scholar 

  49. Paul B, Banerji PJ (2011) Enhancement in thermoelectric power in lead telluride nanocomposite: role of oxygen vis-à-vis nanostruct. Nano Electron Phys 3:691–697

    Google Scholar 

  50. Paul B, Kumar VA, Banerji P (2010) Embedded Ag-rich nanodots in PbTe: enhancement of thermoelectric properties through energy filtering of the carriers. J Appl Phys 108:064322

    Article  Google Scholar 

  51. Pei Y, Heinz NA, Snyder GJ (2011a) Alloying to increase the band gap for improving thermoelectric properties of Ag2Te. J Mater Chem 21:18256

    Article  CAS  Google Scholar 

  52. Pei Y, Lensch-Falk J, Toberer ES, Medlin DL, Snyder GJ (2011b) High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv Funct Mater 21:241–249

    Article  CAS  Google Scholar 

  53. Popescu A, Woods LM, Martin J, Nolas GS (2009) Model of transport properties of thermoelectric nanocomposite materials. Phys Rev B 79:205302

    Article  Google Scholar 

  54. Poudel B, Hao Q, Ma Y et al (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638

    Article  CAS  Google Scholar 

  55. Prasher R (2006) Ultralow thermal conductivity of a packed bed of crystalline nanoparticles: a theoretical study. Phys Rev B 74:165413

    Article  Google Scholar 

  56. Quarez E, Hsu K-F, Pcionek R, Frangis N, Polychroniadis EK, Kanatzidis MG (2005) Nanostructuring compositional fluctuations and atomic ordering in the thermoelectric materials AgPbmSbTe2+m the myth of solid solutions. J Am Chem Soc 127:9177–9190

    Article  CAS  Google Scholar 

  57. Rogacheva EI, Krivulkin IM, Nashchekina ON, Sipatov AYu, Volobuev VV, Dresselhaus MS (2001) Effect of oxidation on the thermoelectric properties of PbTe and PbS epitaxial films. Appl Phys Lett 78:1661–1663

    Article  CAS  Google Scholar 

  58. Sakuma T, Saitoh S (1985) Structure of α-Ag2Te. J Phys Soc Jpn 54:3647–3648

    Article  CAS  Google Scholar 

  59. Scanlon W (1962) Precipitation of Te and Pb in PbTe crystals. Phys Rev 126:509–513

    Article  CAS  Google Scholar 

  60. Scheele M, Oeschler N, Meier K, Kornowski A, Klinke C, Weller H (2009) Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv Funct Mater 19:3476–3483

    Article  CAS  Google Scholar 

  61. Scheele M, Oeschler N, Veremchuk I, Reinsberg K-G, Kreuziger A-M, Kornowski A, Broekaert J, Klinke C, Weller H (2010) ZT enhancement in solution-grown Sb(2-x)BixTe3 nanoplates. ACS Nano 4:4283–4291

    Article  CAS  Google Scholar 

  62. Scheele M, Oeschler N, Veremchuk I et al (2011) Thermoelectric properties of lead chalcogenide core–shell nanostructures. ACS Nano 5:8541–8551

    Article  CAS  Google Scholar 

  63. Schenk M, Berger H, Klimakow A, Mühlberg M, Wienecke M (1988) Nonstoichiometry and point defects in PbTe. Cryst Res Technol 23:77–84

    Article  CAS  Google Scholar 

  64. Schneider J, Schulz H (1993) X-ray powder diffraction of Ag2Te at temperatures up to 1123 K. Z Kristallogr 203:1–15

    Article  CAS  Google Scholar 

  65. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Article  CAS  Google Scholar 

  66. Sootsman JR, Kong H, Uher C et al (2008) Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angew Chem 120:8746–8750

    Article  Google Scholar 

  67. Szczech JR, Higgins JM, Jin S (2011) Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J Mater Chem 21:4037–4055

    Article  CAS  Google Scholar 

  68. Taylor PF, Wood C (1961) Thermoelectric properties of Ag2Te. J Appl Phys 32:1–3

    Article  CAS  Google Scholar 

  69. Urban JJ, Talapin DV, Shevchenko EV, Murray CB (2006) Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films. J Am Chem Soc 128:3248–3255

    Article  CAS  Google Scholar 

  70. Urban JJ, Talapin DV, Shevchenko EV et al (2007) Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nat Mater 6:115–121

    Article  CAS  Google Scholar 

  71. Van Dong N, Tung PN (1968) Transport properties of silver telluride in the solid and liquid states. Physica status solidi (b) 30:557–567

    Article  Google Scholar 

  72. Vaqueiro P, Powell AV (2010) Recent developments in nanostructured materials for high-performance thermoelectrics. J Mater Chem 20:9577

    Article  CAS  Google Scholar 

  73. Vashaee D, Shakouri A (2004) Improved thermoelectric power factor in metal-based superlattices. Phys Rev Lett 92:106103

    Article  Google Scholar 

  74. Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG (2010) Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater 22:3970–3980

    Article  CAS  Google Scholar 

  75. Wang RY, Feser JP, Lee J-S et al (2008) Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett 8:2283–2288

    Article  CAS  Google Scholar 

  76. Wood C, Harrap V, Kane WM (1961) Degeneracy in Ag2Te. Phys Rev 121:978–982

    Article  CAS  Google Scholar 

  77. Zebarjadi M, Joshi G, Zhu G et al (2011) Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett 11:2225–2230

    Article  CAS  Google Scholar 

  78. Zebarjadi M, Esfarjani K, Dresselhaus MS et al (2012) Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ Sci 5:5147

    Article  Google Scholar 

  79. Zemel JN, Jensen JD, Schoolar RB (1965) Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe. Phys Rev 140:A330–A342

    Article  Google Scholar 

  80. Zhao Y, Dyck JS, Burda C (2011) Toward high-performance nanostructured thermoelectric materials: the progress of bottom-up solution chemistry approaches. J Mater Chem 21:17049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the European Regional Development Funds and the Spanish MICINN Projects MAT2008-05779, MAT2008-03400-E/MAT, MAT2010-15138, MAT2010-21510, CSD2009-00050, and ENE2008-03277-E/CON. M.I. is grateful to the Spanish MICINN for her PhD grant. A. Cirera acknowledges support from ICREA Academia program. A. Cabot is grateful to the Spanish MICINN for financial support through the Ramón y Cajal program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreu Cabot.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cadavid, D., Ibáñez, M., Gorsse, S. et al. Bottom-up processing of thermoelectric nanocomposites from colloidal nanocrystal building blocks: the case of Ag2Te–PbTe. J Nanopart Res 14, 1328 (2012). https://doi.org/10.1007/s11051-012-1328-0

Download citation

Keywords

  • Nanocomposites
  • Colloidal nanoparticles
  • Ag2Te
  • PbTe
  • Thermoelectric
  • Energy
  • Bottom-up