Skip to main content
Log in

Negative curvature dependent plasmonic coupling and local field enhancement of crescent silver nanostructure

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The plasmonic spectra and local field enhancement properties of the silver nanocrescent with fixed maximum thickness are theoretically studied using the discrete dipole approximation calculation. Both the particle plasmon mode and tip-cavity plasmonic coupling of the nanocrescent could be fine tuned by controlling the negative curvature of the nanocavity. The plasmonic conversion between particle plasmon of the silver tip and symmetric plasmon hybridization of the silver shell could be switched by changing the open and close state of the nanocavity. The intensity of intra-particle plasmonic coupling between tip and cavity resonance and the corresponding local field enhancement could also be tuned by the cavity radius. This study indicates that the metal surface with changing negative curvature takes great effect on the surface charge distribution of the metallic nanostructure and then controls the plasmon coupling and local field enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378–7383

    Article  CAS  Google Scholar 

  • Bocchio NL, Unger A, Álvarez M, Kreiter M (2008) Thin layer sensing with multipolar plasmonic resonances. J Phys Chem C 112:14355–14359

    Article  CAS  Google Scholar 

  • Brioude A, Jiang XC, Pileni MP (2005) Optical properties of gold nanorods: DDA simulations supported by experiments. J Phys Chem B 109:13138–13142

    Google Scholar 

  • Bukasov R, Ali TA, Nordlander P, Shumaker-Parry JS (2010) Probing the plasmonic near-field of gold nanocrescent antennas. ACS Nano 4:6639–6650

    Article  CAS  Google Scholar 

  • Clark AW, Sheridan AK, Glidle A, Cumming DRS, Cooper JM (2007) Tuneable visible resonances in crescent shaped nano-split-ring resonators. Appl Phys Lett 91:093109

    Article  Google Scholar 

  • Collinge MJ, Draine BT (2004) Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry. J Opt Soc Am A 21:2023–2028

    Article  Google Scholar 

  • Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7:729–732

    Article  CAS  Google Scholar 

  • Jia HY, Xu WQ, An J, Li DM, Zhao B (2006) A simple method to synthesize triangular silver nanoparticles by light irradiation. Spectrochim Acta A 64:956–960

    Article  Google Scholar 

  • Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  • Kim J, Liu GL, Lu Y, Lee LP (2005) Intra-particle plasmonic coupling of tip and cavity resonance modes in metallic apertured nanocavities. Opt Express 13:8332–8338

    Article  Google Scholar 

  • Liu GL, Lu Y, Kim J, Doll JC, Lee LP (2005) Magnetic nanocrescents as controllable surface-enhanced Raman scattering nanoprobes for biomolecular imaging. Adv Mater 17:2683–2688

    Article  CAS  Google Scholar 

  • Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5:119–124

    Article  CAS  Google Scholar 

  • Mohamed MB, Volkov V, Link S (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317:517–523

    Article  CAS  Google Scholar 

  • Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706:8–24

    Article  CAS  Google Scholar 

  • Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120:5444–5454

    Article  CAS  Google Scholar 

  • Prodan E, Radlo C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  • Radloff C, Halas NJ (2004) Plasmonic properties of concentric nanoshells. Nano Lett 4:1323–1327

    Article  CAS  Google Scholar 

  • Rochholz H, Bocchio N, Kreiter M (2007) Tuning resonances on crescent-shaped noble-metal nanoparticles. New J Phys 9:053

    Article  Google Scholar 

  • Rodríguez-Lorenzo L, Romo-Herrera JM, Pérez-Juste J, Alvarez-Puebla RA, Liz-Marzán LM (2011) Reshaping and LSPR tuning of Au nanostars in the presence of CTAB. J Mater Chem 21:11544–11549

    Article  Google Scholar 

  • Ross BM, Lee LP (2008) Plasmon tuning and local field enhancement maximization of the nanocrescent. Nanotechnology 19:275201

    Article  Google Scholar 

  • Sekhon JS, Verma SS (2011) Optimal dimensions of gold nanorod for plasmonic nanosensors. Plasmonics 6:163–169

    Article  CAS  Google Scholar 

  • Shumaker-Parry JS, Rochholz H, Kreiter M (2005) Fabrication of crescent-shaped optical antennas. Adv Mater 17:2131–2134

    Article  CAS  Google Scholar 

  • Sosa IO, Noguez C, Barrera RG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107:6269–6275

    Article  CAS  Google Scholar 

  • Unger A, Kreiter M (2009) Analyzing the performance of plasmonic resonators for dielectric sensing. J Phys Chem C 113:12243–12251

    Article  CAS  Google Scholar 

  • Wang Y, Zhou W, Liu A, Chen W, Fu F, Yan X, Jiang B, Xue Q, Zheng W (2011) Optical properties of the crescent and coherent applications. Opt Express 19:8303–8311

    Article  CAS  Google Scholar 

  • Wu LY, Ross BM, Lee LP (2009) Optical properties of the crescent-shaped nanohole antenna. Nano Lett 9:1956–1961

    Article  CAS  Google Scholar 

  • Yang P, Portalès H, Pileni MP (2009) Identification of multipolar surface plasmon resonances in triangular silver nanoprisms with very high aspect ratios using the DDA method. J Phys Chem C 113:11597–11604

    Article  CAS  Google Scholar 

  • Yurkin MA, Hoekstra AG (2007) The discrete dipole approximation: an overview and recent developments. J Quant Spectrosc Radiat Transf 106:558–589

    Article  CAS  Google Scholar 

  • Zhu J, Li JJ, Yuan L, Zhao JW (2012) Optimization of three-layered au-ag bimetallic nanoshells for triple-bands surface plasmon resonance. J Phys Chem C 116:11734–11740

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 11174232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Ren, Yj. Negative curvature dependent plasmonic coupling and local field enhancement of crescent silver nanostructure. J Nanopart Res 14, 1326 (2012). https://doi.org/10.1007/s11051-012-1326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1326-2

Keywords

Navigation