Electro-hydrodynamic generation of monodisperse nanoparticles in the sub-10 nm size range from strongly electrolytic salt solutions: governing parameters of scaling laws

  • Anne Maißer
  • Michel B. Attoui
  • Alfonso M. Gañán-Calvo
  • Wladyslaw W. Szymanski
Research Paper


A charge reduced electro-hydrodynamic atomization (EHDA) device has been used to generate airborne salt clusters in the sub 10 nm size range. The focus of this study on that specific sub-micron range of electrospray droplets with relatively high electrical conductivities and permittivities aims to address the still existing controversy on the scaling laws of electrosprayed droplet diameters. In this study different concentrations of sodium chloride and potassium chloride—both show strong electrolytic behavior—have been electrosprayed from solutions in pure water, or from aqueous ammonium acetate buffer liquids of varying concentrations. The dry residue salt cluster diameter generated by the EHDA process have been measured using a differential mobility analyzer. The initial droplet diameter has been determined indirectly from the measured particle size following the steps of Chen et al. (J Aerosol Sci 26:963–977, 1995). Results have been compared to existing scaling laws valid for direct droplet measurements. They can be interpreted concisely on the basis of a realistic hypothesis on possible electrochemical effects taking place and affecting the droplet and thus nanoparticle formation in EHDA. The hypothesis developed in this work and the comparison with the experimental results are shown and discussed in the manuscript.


EHDA Scaling laws Electrolytes 


  1. Allmaier G, Laschober C, Szymanski W (2008) Nano ES–GEMMA and PDMA, new tools for the analysis of nanobioparticles—protein complexes, lipoparticles, and viruses. J Am Soc Mass Spec 19:1062–1068Google Scholar
  2. Attoui M, Fernández-García J, Cuevas J, Vidal-de-Miguel G, Fernandez de la Mora J (2013) Charge evaporation from nanometer polystyrene aerosols. J Aerosol Sci 55:149–156Google Scholar
  3. Bacher G, Szymanski W, Kaufman S, Zöllner P, Blaas D, Allmaier G (2001) Charge-reduced nano electrospray ionization combined with differential mobility analysis of peptides, proteins, glycoproteins, noncovalent protein complexes and viruses. J Mass Spec 36(9):1038–1052CrossRefGoogle Scholar
  4. Basak S, Chen D, Biswas P (2007) Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem Eng Sci 62(4):1263–1268CrossRefGoogle Scholar
  5. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgeGoogle Scholar
  6. Chen D, Pui D (1997) Experimental investigation of scaling laws for electrospraying: dielectric constant effect. Aerosol Sci Technol 27(3):367–380CrossRefGoogle Scholar
  7. Chen DR, Pui DYH, Kaufman SL (1995) Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range. J Aerosol Sci 26:963–977CrossRefGoogle Scholar
  8. Cloupeau M (1994) Recipes for use of EHD spraying in cone-jet mode and notes on corona discharge effects. J Aerosol Sci 25(6):1143–1157CrossRefGoogle Scholar
  9. Cloupeau M, Prunet-Foch B (1989) Electrostatic spraying of liquids in cone-jet mode. J Electrost 22:135–159Google Scholar
  10. Cloupeau M, Prunet-Foch B (1990) Electrostatic spraying of liquids: main functioning modes. J Electrost 25(2):165–184Google Scholar
  11. Fernandez de la Mora J (2007) The fluid dynamics of Taylor cones. Annu Rev Fluid Mech 39:217–243Google Scholar
  12. Fernandez de la Mora J, Loscertales I (1994) The current emitted by highly conducting Taylor cones. J Fluid Mech 260:155–184Google Scholar
  13. Fuchs N (1963) On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Pure Appl Geophys 56(1):185–193CrossRefGoogle Scholar
  14. Gamero-Castaño M, Hruby V (2002) Electric measurements of charged sprays emitted by cone-jets. J Fluid Mech 459:245–276CrossRefGoogle Scholar
  15. Gañán-Calvo AM (1997) Cone-jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying. Phys Rev Lett 79:217–220CrossRefGoogle Scholar
  16. Gañán-Calvo AM (1997) On the theory of electrohydrodynamically driven capillary jets. J Fluid Mech 335:165–188CrossRefGoogle Scholar
  17. Gañán-Calvo AM (1998) The universal nature and scaling law of the surface charge in electrospraying. J Aerosol Sci 29:S975–S976Google Scholar
  18. Gañán-Calvo AM (1999) The surface charge in electrospraying: its nature and its universal scaling laws. J Aerosol Sci 30:863–872Google Scholar
  19. Gañán-Calvo AM (2004) On the general scaling theory for electrospraying. J Fluid Mech 507:203–212CrossRefGoogle Scholar
  20. Gañán-Calvo AM, Montanero JM (2009) Revision of capillary cone-jet physics: electrospray and flow focusing. Phys Rev E 79:066305CrossRefGoogle Scholar
  21. Gañán-Calvo AM, Lasheras JC, Dávila J, Barrero A (1994) The electrostatic spray emitted from an electrified conical meniscus. J Aerosol Sci 25:1121–1142CrossRefGoogle Scholar
  22. Gañán-Calvo AM, Dávila J, Barrero A (1997) Current and droplet size in the electrospraying of liquids scaling laws. J Aerosol Sci 28:249–275CrossRefGoogle Scholar
  23. Hartman RPA, Brunner DJ, Camelot DMA, Marijnissen JCM, Scarlett B (1999) Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. J Aerosol Sci 30:823–849CrossRefGoogle Scholar
  24. Hummes D, Neumann S, Fissan H, Stratmann F (1996) Experimental determination of the transfer function of a differential mobility analyzer (dma) in the nanometer size range. Part Part Syst Charact 13(5):327–332CrossRefGoogle Scholar
  25. Jaworek A, Sobczyk A (2008) Electrospraying route to nanotechnology: an overview. J Electrost 66:197–219CrossRefGoogle Scholar
  26. Kaufman S, Dorman F (2008) Sucrose clusters exhibiting a magic number in dilute aqueous solutions. Langmuir 24(18):9979–9982CrossRefGoogle Scholar
  27. Laschober C, Kaufman S, Reischl G, Allmaier G, Szymanski W (2006) Comparison between an unipolar corona charger and a polonium-based bipolar neutralizer for the analysis of nanosized particles and biopolymers. J Nanosci Nanotechnol 6(5):1474–1481CrossRefGoogle Scholar
  28. Lenggoro I, Okuyama K, Fernándezdela Mora J, Tohge N (2000) Preparation of ZnS nanoparticles by electrospray pyrolysis. J Aerosol Sci 31(1):121CrossRefGoogle Scholar
  29. Li Z, Li Y, Lu J (1999) Surface tension model for concentrated electrolyte aqueous solutions by the Pitzer equation. Ind Eng Chem Res 38(3):1133–1139CrossRefGoogle Scholar
  30. Lide DR (2007) Handbook of chemistry and physics, 88th edition. CRC Press, Boca RatonGoogle Scholar
  31. Liu B, Pui D (1974) Electrical neutralization of aerosols. J Aerosol Sci 5(5):465–472CrossRefGoogle Scholar
  32. López-Herrera JM, Gañán-Calvo AM (2004) A note on charged capillary jet breakup of conducting liquids: experimental validation of a viscous one-dimensional model. J Fluid Mech 501:303–326CrossRefGoogle Scholar
  33. Reischl GP, Makela JM, Karch R, Necid J (1996) Bipolar charging of ultrafine particles in the size range below 10 nm. J Aerosol Sci 27:931–949CrossRefGoogle Scholar
  34. Rosell-Llompart J, de la Mora JF (1994) Generation of monodisperse droplets 0.3 to 4 micrometre in diameter from electrified cone-jets of highly conducting and viscous liquids. J Aerosol Sci 25:1093–1119CrossRefGoogle Scholar
  35. Saville DA (1997) Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu Rev Fluid Mech 29:27–64CrossRefGoogle Scholar
  36. Scalf M, Westphall MS, Krause J, Kaufman SL, Smith LM (1999) Controlling charge states of large ions. Science 283:194–197Google Scholar
  37. Tammet H (1995) Size and mobility of nanometer particles, clusters and ions. J Aerosol Sci 26(3):459–475CrossRefGoogle Scholar
  38. Tang K, Gomez A (1994) Generation by electrospray of monodisperse water droplets for targeted drug delivery by inhalation. J Aerosol Sci 25(6):1237–1249CrossRefGoogle Scholar
  39. Taylor G (1964) Disintegration of water drops in electric field. Proc R Soc Lond A 280:383–397CrossRefGoogle Scholar
  40. Wild M, Meyer J, Kasper G (2012) A fast accurate method of using electrical mobility scans for the direct measurement of aerosol charge distributions. J Aerosol Sci 52:69–79CrossRefGoogle Scholar
  41. Winklmayr W, Reischl GP, Lindner AO, Berner A (1991) A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm. J Aerosol Sci 22(3):289–296CrossRefGoogle Scholar
  42. Zeleny J (1917) Instability of electrified liquid surfaces. Phys Rev 10:1–6CrossRefGoogle Scholar
  43. Zhang HL, Han SJ (1996) Viscosity and density of water + sodium chloride + potassium chloride solutions at 298.15 k. J Chem Eng Data 41:516–520CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Anne Maißer
    • 1
    • 2
  • Michel B. Attoui
    • 3
  • Alfonso M. Gañán-Calvo
    • 4
  • Wladyslaw W. Szymanski
    • 1
  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria
  2. 2.Delft University of TechnologyDelftThe Netherlands
  3. 3.LISA, UMR CNRS University Paris Est Creteil, University Paris-DiderotCréteilFrance
  4. 4.ESIUniversidad de SevillaSevillaSpain

Personalised recommendations