Skip to main content
Log in

Development of polymeric nanoparticles showing tuneable pH-responsive precipitation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A reverse micellar system comprising dioctyl-sulfosuccinate (AOT)/toluene was used as a template for polymerization of acrylamide/bisacrylamide-based functionalized polymeric nanoparticles. Such nanoparticles were typically sized between 20 and 90 nm and could be synthesized with a wide range of functional groups according to the monomers added to the polymerization mixture. Carboxy nanoparticles with acrylic acid as the functional monomer were synthesized in the reported work. The carboxy nanoparticles were pH sensitive and precipitated at pHs below 4. Modification of carboxy-functionalized polymeric nanoparticles with polyetheleneimine (PEI) resulted in the fabrication of a series of pH-responsive nanoparticles which could precipitate at different pHs and ionic strengths according to the PEI/carboxy ratio in the system. Both non-covalent PEI-nanoparticles conjugates and nanoparticles with covalently linked PEI behaved in this way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arizaga A, Ibarz G, Piñol R (2010) Stimuli-responsive poly(4-vinyl pyridine) hydrogel nanoparticles: synthesis by nanoprecipitation and swelling behavior. J Colloid Interface Sci 348:668–672. doi:10.1016/j.jcis.2010.05.051

    Article  CAS  Google Scholar 

  • Bae YH (1997) In: Park K (ed) Controlled drug delivery challenges and strategies. ACS, Washington, DC

    Google Scholar 

  • Benoit JP, Couvreur P, Devissaguet JP, Fessi H, Puisieux F, Roblot-Treupel L (1986) Les formes vectorisées ou distribution modulée, nouveuax sistèmes d’administration medicaments. J Pharm Belg 41:319–329

    CAS  Google Scholar 

  • Filippov S, Hruby M, Konak C, Mackova H, Spirkova M, Stepanek P (2008) Novel pH-responsive nanoparticles. Langmuir 24:9295–9301. doi:10.1021/la801472x

    Article  CAS  Google Scholar 

  • Fujii M, Taniguchi M (1991) Application of reversibly soluble polymers in bioprocessing. Trends Biotechnol 9:191–196. doi:10.1016/0167-7799(91)90062-M

    Article  CAS  Google Scholar 

  • Galaev IY, Mattiasson B (1999) ‘Smart’ polymers and what they could do in biotechnology and medicine. Trends Biotechnol 17:335–340. doi:10.1016/S0167-7799(99)01345-1

    Article  CAS  Google Scholar 

  • Galaev IY, Gupta MN, Mattiasson B (1996) Use smart polymers for bioseparations. ChemTech 12:19–25

    Google Scholar 

  • Guoquiang D, Batra R, Kaul R, Gupta MN, Mattiassion B (1995) Alternative modes of precipitation of Eudragit S 100: a potential ligand carrier for affinity precipitation of protein. Bioseparation 5:339–350

    Google Scholar 

  • Gurny R, Junginger HE, Pulsatile PN (1993) Drug delivery: current applications and future trends. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Hui CL, Li XG, Hsing IM (2005) Well-dispersed surfactant-stabilized Pt/C nanocatalysts for fuel cell application: dispersion control and surfactant removal. Electrochim Acta 51:711–719. doi:10.1016/j.electacta.2005.05.024

    Article  CAS  Google Scholar 

  • Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 32:1205–1237. doi:10.1016/j.progpolymsci.2007.05.003

    Article  CAS  Google Scholar 

  • Langer R (1998) Drug delivery and targeting. Nature 392(Suppl.):5–10

    CAS  Google Scholar 

  • Martin GR, Jain RK (1994) Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res 54:5670–5674

    CAS  Google Scholar 

  • McClean S, Prosser E, Meehan E, O’Malley D, Clarke N, Ramtoola Z (1998) Binding and uptake of biodegradable poly-dl-lactide micro- and nanoparticles in intestinal epithelia. Eur J Pharm Sci 6:153–163. doi:10.1016/S0928-0987(97)10007-0

    Article  CAS  Google Scholar 

  • Medeiros SF, Santos AM, Fessi H, Elaissari A (2011) Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm 403:139–161. doi:10.1016/j.ijpharm.2010.10.011

    Article  CAS  Google Scholar 

  • Morrison RT, Boyd RN (1992) Organic Chemistry, 6th edn. Prentice-Hall Inc, New Jersey

    Google Scholar 

  • Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35:174–211. doi:10.1016/j.progpolymsci.2009.10.004

    Article  CAS  Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339. doi:10.1016/S0169-409X(01)00203-4

    Article  CAS  Google Scholar 

  • Sahoo SK, De TK, Ghosh PK, Maitra A (1998) pH- and Thermo-sensitive Hydrogel Nanoparticles. J Colloid Interface Sci 206:361–368

    Article  CAS  Google Scholar 

  • Sherwood L (1997) Human physiology from cells to systems, 3rd edn. Wadsworth Publishing Company, Belmont, pp 121–165

    Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20. doi:10.1016/S0168-3659(00)00339-4

    Article  CAS  Google Scholar 

  • Vakurov A, Pchelintsev N, Forde J, O’Fagain C, Gibson T, Millner PA (2009) The preparation of size-controlled functionalized polymeric nanoparticles in micelles. Nanotechnology 20:295605. doi:10.1088/0957-4484/20/29/295605

    Article  Google Scholar 

  • Valeur B, Keh E (1979) Determination of the hydrodynamic volume of inverted micelles containing water by the fluorescent polarization technique. J Phys Chem 83:3305–3307. doi:10.1021/j100488a025

    Article  CAS  Google Scholar 

  • Wu XY, Zhang Q, Arshady R (2003) Stimuli sensitive hydrogels. Polymer structure and phase transition. In: Arshady R (ed) Polymeric biomaterials. Citus Books, London

    Google Scholar 

  • Zhang K, Wu XY (2004) Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials 25:5281–5291. doi:10.1016/j.biomaterials.2003.12.032

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work reported has been carried out with financial assistance from the EC, project COMBIO (contract COOP-CT-2006-032628). We thank the Electron Microscopy Unit at Michael Smith Building of Manchester University, and Roger Meadows for performing the freeze-fracture of nanoparticles samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander Vakurov or Paul Millner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vakurov, A., Pchelintsev, N.A., Gibson, T. et al. Development of polymeric nanoparticles showing tuneable pH-responsive precipitation. J Nanopart Res 14, 1302 (2012). https://doi.org/10.1007/s11051-012-1302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1302-x

Keywords

Navigation