Skip to main content
Log in

Synthesis of multi-walled carbon nanotubes/β-FeOOH nanocomposites with high adsorption capacity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A hybrid nanostructure of multi-walled carbon nanotubes (CNTs) and β-ferric oxyhydroxide (β-FeOOH) nanoparticles is synthesized by ultrasonic-assisted in situ hydrolysis of the precursor ferric chloride and CNTs. Characterization by X-ray diffraction, scanning electron microscopy , and transmission electron microscopy establishes the nanohybrid structure of the synthesized sample. The results revealed that the surface of CNTs was uniformly assembled by numerous β-FeOOH nanoparticles and had an average diameter of 3 nm. The formation route of anchoring β-FeOOH nanoparticles onto CNTs was proposed as the intercalation and adsorption of iron ions onto the wall of CNTs, followed by the nucleation and growth of β-FeOOH nanoparticles. The values of remanent magnetization (M r) and coercivity (H c) of the as-synthesized CNTs/β-FeOOH nanocomposites were 0.1131 emu g, and 490.824 Oe, respectively. Furthermore, CNTs/β-FeOOH nanocomposites showed a very high adsorption capacity of Congo red and thus these nanocomposites can be used as good adsorbents and can be used for the removal of the dye of Congo red from the waste water system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cheng B, Le Y, Cai WQ, Yu JG (2011) Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. J Hazard Mater 185:889–897

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxide: structure, properties, reactions, occurrence and uses. VCH, Weinheim

    Google Scholar 

  • Fang XL, Li Y, Chen C, Kuang Q, Gao XZ, Xie ZX, Xie SY, Huang RB, Zheng LS (2010) pH-Induced simultaneous synthesis and self-assembly of 3D layered β-FeOOH nanorods. Langmuir 26(4):2745–2750

    Article  CAS  Google Scholar 

  • Guldi DM, Rahman GMA, Sgobba V, Kotov NA, Bonifazi D, Prato M (2006) CNT-CdTe versatile donor-acceptor nanohybrids. J Am Chem Soc 128:2315–2323

    Article  CAS  Google Scholar 

  • Haremza JM, Hahn MA, Krauss TD (2002) Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes. Nano Lett 2:1253–1258

    Article  CAS  Google Scholar 

  • Kim YT, Tadai K, Mitani T (2005) Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J Mater Chem 15:4914–4921

    Article  CAS  Google Scholar 

  • Li CQ, Sun NJ, Ni JF, Wang JY, Chu HB, Zhou HH, Li MX, Li Y (2008) Controllable preparation and properties of composite materials based on ceria nanoparticles and carbon nanotubes. J Solid State Chem 181:2620–2625

    Article  CAS  Google Scholar 

  • Li JH, Hong RY, Luo GH, Zheng Y, Li HZ, Wei DG (2010) An easy approach to encapsulating Fe3O4 nanoparticles in multiwalled carbon nanotubes. New Carbon Mater 25(3):192–198

    Article  CAS  Google Scholar 

  • Lu YJ, Li J, Han J, Ng HT, Binder C, Partridge C, Meyyappan M (2004) Methane detection using palladium loaded single-walled carbon nanotube sensors. Chem Phys Lett 391:344–348

    Article  CAS  Google Scholar 

  • Paul R, Kumbhakar P, Mitra AK (2010) Blue-green luminescence by SWCNT/ZnO hybrid nanostructure synthesized by a simple chemical route. Physica E 43:279–284

    Article  CAS  Google Scholar 

  • Piao YZ, Kim JY, Na HB, Kim DY, Beak JS, Ko MK, Lee JH, Shokouhimehr M, Hyeon T (2008) Wrap-bake-peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat Mater 7:242–247

    Article  CAS  Google Scholar 

  • Planeix JM, Coustel N, Coq B, Brotons V, Kumbhar PS, Dutartre R, Geneste P, Bernier P, Ajayan PM (1994) Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc 116:7935–7936

    Article  CAS  Google Scholar 

  • Prabhuram J, Zhao TS, Tang ZK, Chen R, Liang ZX (2006) Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. J Phys Chem B 110:5245–5252

    Article  CAS  Google Scholar 

  • Rahimi R, Kerdari H, Rabbani M, Shafiee M (2011) Synthesis, characterization and adsorbing properties of hollow Zn-Fe2O4 nanospheres on removal of Congo red from aqueous solution. Desalination 280:412–418

    Article  CAS  Google Scholar 

  • Reddy KR, Sin BC, Yoo CH, Park W, Ryu KS, Lee JS, Sohn D, Lee Y (2008) A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scripta Mater 58:1010–1013

    Article  CAS  Google Scholar 

  • Robel I, Bunker BA, Kamat PV (2005) SWCNT-CdS nanocomposite as light harvesting assembly: photoinduced charge transfer interactions. Adv Mater 17:2458–2463

    Article  CAS  Google Scholar 

  • Song HJ, Qian J, Jia XH, Yang XF, Tang H, Min CY (2012) A new one-step synthesis method for coating multi-walled carbon nanotubes with iron oxide nanorods. J Nanopart Res 14:1–7

    CAS  Google Scholar 

  • Star A, Joshi V, Skarupo S, Thomas D, Gabriel JCP (2006) Gas sensor array based on metal-decorated carbon nanotubes. J Phys Chem B 110:21014–21020

    Article  CAS  Google Scholar 

  • Tessonnier JP, Pesant L, Ehret G, Ledoux MJ, Huu CP (2005) Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Appl Catal A 288:203–210

    Article  CAS  Google Scholar 

  • Wang X, Chen XY, Gao LS, Zheng HG, Ji MR, Tang CM, Shen T, Zhang ZD (2004) Synthesis of β-FeOOH and α-Fe2O3 nanorods and electrochemical properties of β-FeOOH. J Mater Chem 14:905–907

    Article  CAS  Google Scholar 

  • Xiong YJ, Xie Y, Chen SW, Li ZQ (2003) Fabrication of self-supported pattern of oriented aligned β-FeOOH nanowires via a low-temperature solution reaction. Chem Eur J 9:4991–4996

    Article  CAS  Google Scholar 

  • Xiong YJ, Li ZQ, Li XX, Hu B, Xie Y (2004) Thermally stable hematite hollow nanowires. Inorg Chem 43:6540–6542

    Article  CAS  Google Scholar 

  • Yan XM, Pan DY, Li Z, Zhao B, Zhang JC, Wu MH (2010) Facile synthesis of solution-disposable carbon nanotube-TiO2 hybrids in organic media. Mater Lett 64:1694–1697

    Article  CAS  Google Scholar 

  • Zhu LP, Xiao HM, Fu SY (2007) Template-free synthesis of monodispersed and single-crystalline cantaloupe-like Fe2O3 superstructures. Cryst Growth Des 7:177–182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 50903040, 51103065), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Jie Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, HJ., Liu, L., Jia, XH. et al. Synthesis of multi-walled carbon nanotubes/β-FeOOH nanocomposites with high adsorption capacity. J Nanopart Res 14, 1290 (2012). https://doi.org/10.1007/s11051-012-1290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1290-x

Keywords

Navigation