Skip to main content
Log in

Seed-mediated growth and manipulation of Au nanorods via size-controlled synthesis of Au seeds

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Seed-mediated growth of gold (Au) nanorods with highly controllable length, width, and aspect ratio was accomplished via carefully size-controlled synthesis of the original Au seeds. A slow dynamic growth of Au nanoparticle seeds was observed after reduction of the Au salt (i.e., hydrogen tetrachloroaurate (III) hydrate) by sodium borohydride (NaBH4) in the presence of cetyltrimethyl ammonium bromide (CTAB). As such, the size of the Au nanoparticle seeds can therefore be manipulated through control over the duration of the reaction period (i.e., aging times of 2, 8, 48, 72, and 144 h were used in this study). These differently sized Au nanoparticles were subsequently used as seeds for the growth of Au nanorods, where the additions of Au salt, CTAB, AgNO3, and ascorbic acid were employed. Smaller Au nanoparticle seeds obtained via short growth/aging time resulted in Au nanorods with higher aspect ratio and thus longer longitudinal surface plasmon wavelength (LSPW). The larger Au nanoparticle seeds obtained via longer growth/aging time resulted in Au nanorods with lower aspect ratio and shorter LSPW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830. doi:10.103/nature01937

    Article  CAS  Google Scholar 

  • Borodko Y, Habas SE, Koebel M, Yang P, Frei H, Somorjai G (2006) Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J Phys Chem B 110:23052–23059. doi:10.1021/jp063338

    Article  CAS  Google Scholar 

  • Brown KR, Natan MJ (1998) Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir 14:726–728. doi:abs/10.1021/la970982u

    Article  CAS  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed M (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. doi:10.1021/cr030063a

    Article  CAS  Google Scholar 

  • Cheng W, Dong S, Wang E (2005) Spontaneous fractal aggregation of gold nanoparticles and controlled generation of aggregate-biased fractal networks at air/water interface. J Phys Chem B 109:19213–19218. doi:10.1021/jp052255a

    Article  CAS  Google Scholar 

  • Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase synthesis of inorganic nanoparticles. Chem Rev 104:3893–3946. doi:10.1021/Cr030027b

    Article  CAS  Google Scholar 

  • El-Sayed M (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Google Scholar 

  • El-Sayed M (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37:326–333

    Google Scholar 

  • Enustun BV, Turkevich J (1963) Coagulation of colloidial gold. J Am Chem Soc 85:3317. doi:10.1021/ja00904a001

    Article  CAS  Google Scholar 

  • Fan FR, Liu DY, Wu YF, Duan S, Xie ZX, Jiang ZY, Tian ZQ (2008) Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc 130:6949–6951. doi:10.1021/ja801566d

    Article  CAS  Google Scholar 

  • Fu YZ, Du YK, Yang P, Li JR, Jiang L (2007) Shape-controlled synthesis of highly monodisperse and small Size gold nanoparticles. Sci China B 50. doi:10.1007/s11426-007-0085-x

  • Gole A, Murphy CJ (2004) Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater 16:3633–3640. doi:10.1021/cm0492336

    Article  CAS  Google Scholar 

  • Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791. doi:10.1039/b711490g

    Article  CAS  Google Scholar 

  • Habas SE, Lee H, Radmilovic V, Somorjai G, Yang P (2007) Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater 6:692–697. doi:10.1038/nmat1957

    Article  CAS  Google Scholar 

  • Haes AJ, Stuart D, Nie S, Van Duyne RP (2004) Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluores 14:355–367. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15617378

    Google Scholar 

  • He F, Liu J, Roberts CB, Zhao D (2009) One-step “green” synthesis of Pd nanoparticles of controlled size and their catalytic activity for trichloroethene hydrodechlorination. Ind Eng Chem Res 48:6550–6557. doi:10.1021/ie801962fCCC

    Article  CAS  Google Scholar 

  • Henglein A (1999) Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir 15:6738–6744. doi:10.1021/la9901579

    Article  CAS  Google Scholar 

  • Hiemenz PC (1997) Principles of colloid and surface chemistry, chap 10, 3rd edn. Wiley, New York

    Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed M (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120. doi:10.1021/ja057254a

    Article  CAS  Google Scholar 

  • Huang X, Jain PK, El-Sayed IH, El-Sayed M (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228. doi:10.1007/s10103-007-0470-x

    Article  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001a) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13:2313–2322. doi:10.1021/cm000662n

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001b) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17:6782–6786. doi:10.1021/la0104323

    Article  CAS  Google Scholar 

  • Jiang J, Bosnick K, Maillard M, Brus L (2003) Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J Phys Chem B 107:9964–9972. doi:10.1021/jp034632u

    Article  CAS  Google Scholar 

  • Jiang W, Papa E, Fischer H, Mardyani S, Chan WCW (2004) Semiconductor quantum dots as contrast agents for whole animal imaging. Trends Biotechnol 22:607–609. doi:10.1016/j.tibtech.2004.10.012

    Article  CAS  Google Scholar 

  • Johnson CJ, Dujardin E, Davis S, Murphy CJ, Mann S (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12:1765–1770. doi:10.1039/b200953f

    Article  CAS  Google Scholar 

  • Li L, Hu J, Yang W, Alivisatos P (2001) Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 1:349–351. doi:10.1021/nl015559r

    Article  CAS  Google Scholar 

  • Liu J, He F, Gunn TM, Zhao D, Roberts CB (2009) Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach. Langmuir: ACS J Surf Colloids 25:7116–7128. doi:10.1021/la900228d

    Article  CAS  Google Scholar 

  • Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870. doi:10.1021/jp0516846

    Article  CAS  Google Scholar 

  • Murphy C, Gole A, Hunyadi S, Orendorff C (2006) One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45:7544–7554. doi:10.1021/ic0519382

    Article  CAS  Google Scholar 

  • Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE (2008a) Chemical sensing and imaging with metallic nanorods. Chem Commun 544–557. doi:10.1039/b711069c

  • Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008b) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730. doi:10.1021/ar800035u

    Article  CAS  Google Scholar 

  • Ni W, Kou X, Yang Z, Wang J (2008) Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2:677–686. doi:10.1021/nn7003603

    Article  CAS  Google Scholar 

  • Nie S (1997) Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 275:1102–1106. doi:10.1126/science.275.5303.1102

    Article  CAS  Google Scholar 

  • Niesz K, Grass M, Somorjai G (2005) Precise control of the Pt nanoparticle size by seeded growth using EO13PO30EO13 triblock copolymers as protective agents. Nano Lett 5:2238–2240. doi:10.1021/nl051561x

    Article  CAS  Google Scholar 

  • Nikoobakht B, El-Sayed M (2001) Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 12:6368–6374. doi:10.1021/la010530o

    Article  Google Scholar 

  • Nikoobakht B, El-Sayed M (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962. doi:10.1021/cm020732l

    Article  CAS  Google Scholar 

  • Niu W, Zheng S, Wang D, Liu X, Li H, Han S, Chen J (2009) Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J Am Chem Soc 131:697–703. doi:10.1021/ja804115r

    Article  CAS  Google Scholar 

  • Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110:3990–3994. doi:10.1021/jp0570972

    Article  CAS  Google Scholar 

  • Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos A (2000) Shape control of CdSe nanocrystals. Nature 404:59–61. doi:10.1038/35003535

    Article  CAS  Google Scholar 

  • Perezjuste J, Pastorizasantos I, Lizmarzan L, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901. doi:10.1016/j.ccr.2005.01.030

    Article  CAS  Google Scholar 

  • Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649. doi:10.1021/ja047846d

    Article  CAS  Google Scholar 

  • Sau TK, Pal A, Jana NR, Wang ZL, Pal T (2001a) Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J Nanopart Res 3:257–261. doi:10.1023/A:1017567225071

    Article  CAS  Google Scholar 

  • Sau TK, Pal A, Pal T (2001b) Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J Phys Chem B 105:9266–9272. doi:10.1021/jp011420t

    Article  CAS  Google Scholar 

  • Smith DK, Korgel B (2008) The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir: ACS J Surf Colloids 24:644–649. doi:10.1021/la703625a

    Article  CAS  Google Scholar 

  • Turkevich J (1985) Colloidal gold. Part II. Gold Bull 18:125–131. doi:10.1007/BF03214694

    Article  CAS  Google Scholar 

  • Van der Zande B, Bohmer M (2000) Colloidal dispersions of gold rods: synthesis and optical properties. Langmuir 16:451. doi:10.1021/la990425

    Article  Google Scholar 

  • Vijaykumar T, Sanketh R, Kulkarni GU (2007) Polar-solvent mediated phase-transfer of nanocrystals of metals and semiconductors from an aqueous to an organic phase. Chem Phys Lett 436:167–170. doi:10.1016/j.cplett.2007.01.015

    Article  CAS  Google Scholar 

  • Wang ZL, Mohamed MB, Link S, El-Sayed M (1999) Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf Sci 440:L809–L814. doi:10.1016/S0039-6028(99)00865-1

    Article  CAS  Google Scholar 

  • Wang ZL, Gao RP, Nikoobakht B, El-Sayed M (2000) Surface reconstruction of the unstable 110 surface in gold nanorods. J Phys Chem B 104:5417–5420. doi:10.1021/jp000800w

    Article  CAS  Google Scholar 

  • Weissleder R (2001) A clearer vision for in vivo imaging progress continues in the development of smaller, more penetrable probes for biological imaging. Nat Biotechnol 19:316–317. doi:10.1038/86684

    Article  CAS  Google Scholar 

  • Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589. doi:10.1038/nature06917

    Article  CAS  Google Scholar 

  • Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chemistry A 11:454–463. doi:10.1002/chem.200400927

    CAS  Google Scholar 

  • Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40:1067–10676. doi:10.1021/ar7000974

    Article  CAS  Google Scholar 

  • Xiao C, Ding H, Shen C, Yang T, Hui C, Gao H (2009) Shape-controlled synthesis of palladium nanorods and their magnetic properties. J Phys Chem C 113:13466–13469. doi:10.1021/jp902005j

    Article  CAS  Google Scholar 

  • Xiong Y, Wiley BJ, Xia Y (2007) Nanocrystals with unconventional shapes—a class of promising catalysts. Angew Chem Int Ed Engl 46:7157–7159. doi:10.1002/anie.200702473

    Article  CAS  Google Scholar 

  • Yu C, Irudayaraj J (2007) Multiplex biosensor using gold nanorods. Anal Chem 79:572–579. doi:10.1021/ac061730d

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the helpful assistance of Dr. Michael E. Miller with the TEM imaging. The authors would also like to gratefully acknowledge the financial support from the Green Chemistry Institute—ACS Petroleum Research Fund, the United States Department of Energy, and the United States Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher B. Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Duggan, J.N., Morgan, J. et al. Seed-mediated growth and manipulation of Au nanorods via size-controlled synthesis of Au seeds. J Nanopart Res 14, 1289 (2012). https://doi.org/10.1007/s11051-012-1289-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1289-3

Keywords

Navigation