Organometallic approach to polymer-protected antibacterial silver nanoparticles: optimal nanoparticle size-selection for bacteria interaction

  • Julian Crespo
  • Jorge García-Barrasa
  • José M. López-de-Luzuriaga
  • Miguel MongeEmail author
  • M. Elena Olmos
  • Yolanda Sáenz
  • Carmen Torres
Research Paper


The optimal size-specific affinity of silver nanoparticles (Ag NPs) towards E. coli bacteria has been studied. For this purpose, Ag NPs coated with polyvinylpyrrolidone (PVP) and cellulose acetate (CA) have been prepared using an organometallic approach. The complex NBu4[Ag(C6F5)2] has been treated with AgClO4 in a 1:1 molar ratio giving rise to the nanoparticle precursor [Ag(C6F5)] in solution. Addition of an excess of PVP (1) or CA (2) and 5 h of reflux in tetrahydrofuran (THF) at 66 °C leads to Ag NPs of small size (4.8 ± 3.0 nm for PVP-Ag NPs and 3.0 ± 1.2 nm for CA-Ag NPs) that coexist in both cases with larger nanoparticles between 7 and 25 nm. Both nanomaterials display a high antibacterial effectiveness against E. coli. The TEM analysis of the nanoparticle–bacterial cell membrane interaction shows an optimal size-specific affinity for PVP-Ag NPs of 5.4 ± 0.7 nm in the presence of larger size silver nanoparticles.

Graphical Abstract

An organometallic approach permits the synthesis of small size silver nanoparticles (ca 5 nm) as a main population in the presence of larger size nanoparticles. Optimal silver nanoparticle size-selection (5.4 nm) for the interaction with the bacterial membrane is achieved.


Silver nanoparticles Polymers Antibacterial TEM 



The D.G.I. (MEC)/FEDER (CTQ2010-20500-C02-02) and European Commission, POCTEFA (METNANO, EFA 17/08) projects are acknowledged for financial support. J. Crespo thanks the Comunidad Autónoma de La Rioja (CAR) for a grant. We thank the Servicio de Microscopía Electrónica de Materiales (Servicio General de Apoyo a la Investigación), Universidad de Zaragoza and at the Universidad de Cantabria (SERMET) for microscopy facilities.

Supplementary material

11051_2012_1281_MOESM1_ESM.pdf (6.9 mb)
Electronic Supplementary Information Size histograms for PVP-Ag NPs (1) alone and in the presence of E. coli; additional TEM micrographs of PVP-Ag NPs (1) alone and in the presence of bacteria. (PDF 7075 kb)


  1. Akhavan O, Ghaderi E (2009) Bactericidal effects of Ag nanoparticles immobilized on surface of SiO2 thin film with high concentration. Curr Appl Phys 9:1381–1385CrossRefGoogle Scholar
  2. Arumugam SK, Sastry TP, Sreedhar SB, Mandal AS (2007) One step synthesis of silver nanorods by autoreduction of aqueous silver ions with hydroxyapatite: an inorganic–inorganic hybrid nanocomposite. J Biomed Mater Res 80A:391–398CrossRefGoogle Scholar
  3. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249CrossRefGoogle Scholar
  4. Bryaskova R, Pencheva D, Kyulavska M, Bozukova D, Debuigne A, Detrembleur C (2010) Antibacterial activity of poly(vinyl alcohol)-b-poly(acrylonitrile) based micelles loaded with silver nanoparticles. J Colloid Interface Sci 344:424–428CrossRefGoogle Scholar
  5. Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J Chem Biol 4:185–191CrossRefGoogle Scholar
  6. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  7. Chaudret B (2005) Organometallic approach to nanoparticles synthesis and self-organization. C R Phys 6:117–131CrossRefGoogle Scholar
  8. Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredients. Electrochim Acta 51:956–960CrossRefGoogle Scholar
  9. Dal Lago V, França de Oliveira L, de Almeida Gonçalves K, Kobarg J, Cardoso MB (2011) Size-selective silver nanoparticles: future of biomedical devices with enhanced bactericidal properties. J Mater Chem 21:12267–12273CrossRefGoogle Scholar
  10. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287CrossRefGoogle Scholar
  11. Feris K, Otto C, Tinker J, Wingett D, Punnoose A, Thurber A, Kongara M, Sabetian M, Quinn B, Hanna C, Pink D (2010) Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1. Langmuir 26:4429–4436CrossRefGoogle Scholar
  12. Fernández EJ, García-Barrasa J, Laguna A, López-de-Luzuriaga JM, Monge M, Torres C (2008) The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach. Nanotechnology 19:185602CrossRefGoogle Scholar
  13. García-Barrasa J, López-de-Luzuriaga JM, Monge M, Soulantica K, Viau G (2011a) Synthesis of thiolate-protected silver nanocrystal superlattices from an organometallic precursor and formation of molecular di-n-alkyldisulfide lamellar phases. J Nanopart Res 13:791–801CrossRefGoogle Scholar
  14. García-Barrasa J, López-de-Luzuriaga JM, Monge M (2011b) Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Chem Eur J Chem 9:7–19Google Scholar
  15. Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604CrossRefGoogle Scholar
  16. Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63CrossRefGoogle Scholar
  17. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586CrossRefGoogle Scholar
  18. Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holekova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834CrossRefGoogle Scholar
  19. Lin JQ, Zhang HW, Chen Z, Zheng YG (2010) Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4:5421–5429CrossRefGoogle Scholar
  20. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924CrossRefGoogle Scholar
  21. Lu W, Liu G, Gao S, Xing S, Wang J (2008) Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology 19:445711CrossRefGoogle Scholar
  22. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551 (and references therein)CrossRefGoogle Scholar
  23. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346CrossRefGoogle Scholar
  24. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557CrossRefGoogle Scholar
  25. Niño-Martinez N, Martinez-Castañón GA, Aragon-Piñaa A, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F (2008) Characterization of silver nanoparticles synthesized on titanium dioxide fine particles. Nanotechnology 19:065711CrossRefGoogle Scholar
  26. Ozay O, Akcali A, Otkun MT, Silan C, Aktas N, Sahiner N (2010) P(4-VP) based nanoparticles and composites with dual action as antimicrobial materials. Colloids Surf B 79:460–466CrossRefGoogle Scholar
  27. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRefGoogle Scholar
  28. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253CrossRefGoogle Scholar
  29. Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu BH, Mortensen NP, Allison DP, Joy DC, Allison MR, Brown SD, Phelps TJ, Doktycz MJ (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76:7981–7989CrossRefGoogle Scholar
  30. Rangari VK, Mohammad GM, Jeelani S, Hundley A, Vig K, Singh SR, Pillai S (2010) Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their nylon-6 polymer nanocomposite fibers for antimicrobial applications. Nanotechnology 21:095102CrossRefGoogle Scholar
  31. Rao CNR, Müller A, Cheetham AK (2007) Nanomaterials chemistry. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  32. Ruiz E, Rojo-Bezares B, Sáenz Y, Olarte I, Esteban I, Rocha-Gracia R, Zarazaga M, Torres C (2010) Outbreak caused by a multi-resistant Klebsiella pneumoniae strain of new sequence type ST341 carrying new genetic environments of aac(6′)-Ib-cr and qnrS1 genes in a neonatal intensive care unit in Spain. Int J Med Microbiol 300:464–469CrossRefGoogle Scholar
  33. Selvakannan P, Sastry M (2005) Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution. Chem Commun 13:1684–1686Google Scholar
  34. Seth D, Roy Choudhury S, Pradhan S, Gupta S, Palit D, Das S, Debnath N, Goswami A (2010) Nature-inspired novel drug design paradigm using nanosilver: efficacy on multi-drug-resistant clinical isolates of tuberculosis. Curr Microbiol 62:715–726CrossRefGoogle Scholar
  35. Sheikh N, Akhavan A, Kassaee MZ (2012) Synthesis of antibacterial silver nanoparticles by γ-irradiation. Phys E 42:132–135CrossRefGoogle Scholar
  36. Shen J, Shi M, Li N, Yan B, Ma H, Hu Y, Ye M (2010) Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res 3:339–349CrossRefGoogle Scholar
  37. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179CrossRefGoogle Scholar
  38. Sun Y, Xia Y (2003) Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 128:686–691CrossRefGoogle Scholar
  39. Sun Y, Mayers BT, Xia Y (2002) Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2:481–485CrossRefGoogle Scholar
  40. Usón R, Laguna A, Abad JA (1983) Pentahalophenylargentate(I) complexes. J Organomet Chem 246:341–345CrossRefGoogle Scholar
  41. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103CrossRefGoogle Scholar
  42. Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275CrossRefGoogle Scholar
  43. Zhang W, Rittmann B, Chen Y (2011) Size effects on adsorption of hematite nanoparticles on E. coli cells. Environ Sci Technol 45:2172–2178CrossRefGoogle Scholar
  44. Zhang W, Hughes J, Chen Y (2012) Impacts of hematite nanoparticle exposure on biomechanical, adhesive, and surface electrical properties of E. coli cells. Appl Environ Microbiol 78:3905–3915CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Julian Crespo
    • 1
  • Jorge García-Barrasa
    • 1
  • José M. López-de-Luzuriaga
    • 1
  • Miguel Monge
    • 1
    Email author
  • M. Elena Olmos
    • 1
  • Yolanda Sáenz
    • 2
  • Carmen Torres
    • 2
    • 3
  1. 1.Departamento de QuímicaUniversidad de La Rioja, Centro de Investigación en Síntesis Química (CISQ)LogroñoSpain
  2. 2.Área de Microbiología MolecularCentro de Investigación Biomédica de La RiojaLogroñoSpain
  3. 3.Departamento de Agricultura y Alimentación, Área de Bioquímica y Biología MolecularUniversidad de La RiojaLogroñoSpain

Personalised recommendations