Studies of the photostability of CdSe/CdS dot-in-rod nanoparticles

Research Paper


Fluorescent CdSe/CdS dot-in-rod nanoparticles have attracted considerable interest for fundamental research and potential applications in bioscience and physical science. In this work, we investigated photoinduced phenomena in CdSe/CdS dot-in-rods using time-resolved photoluminescence (PL). Our experimental results show that photopassivation, photooxidation, and photoinduced defect/surface states occur in CdSe/CdS dot-in-rods, and these processes depend on the irradiation amount. The thickness of the CdS shell plays an important role for photostability. Photopassivation was found to initially result in an increase of PL intensity when fluence is low. Photooxidation was found to cause a spectral blue shift due to shrinkage of the core. We also found that a thick shell of CdS can effectively suppress photooxidation and hinder the diffusion of oxygen into the core. Irradiation could generate defect/surface states predominantly in the shell and also on the interface between the core and the shell. A weak PL shoulder in the blue side was observed in heavily irradiated samples as a result of photoinduced rupture of encapsulation.

Graphical Abstract


CdSe/CdS dot-in-rod Photooxidation Photopassivation Fluorescence Seeded growth 


  1. Aldeek F, Mustin C, Balan L, Medjahdi G, Roques-Carmes T, Arnoux P, Schneider R (2011) Enhanced photostability from CdSe(S)/ZnO core/shell quantum dots and their use in biolabeling. Eur J Inorg Chem 794–801Google Scholar
  2. Banin U, Itzhak S, Aharoni A, Mokari T, Rothenberg E, Nadler M, Popov I (2006) Seeded growth of InP and InAs quantum rods using indium acetate and myristic acid. Mater Sci Eng C 26:788–794CrossRefGoogle Scholar
  3. Bao HB, Gong YJ, Li Z, Gao MY (2004) Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core–shell structure. Chem Mater 16:3853–3859CrossRefGoogle Scholar
  4. Carbone L, Nobile C, De Giorgi M, Sala FD, Morello G, Pompa P, Hytch M, Snoeck E, Fiore A, Franchini IR, Nadasan M, Silvestre AF, Chiodo L, Kudera S, Cingolani R, Krahne R, Manna L (2007) Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett 7:2942–2950CrossRefGoogle Scholar
  5. Chen X, Lou Y, Samia AC, Burda C (2003) Coherency strain effects on the optical response of core/shell heteronanostructures. Nano Lett 3:799–803CrossRefGoogle Scholar
  6. Chen XD, Wang Z, Liao ZF, Mai YL, Zhang MQ (2007) Roles of anatase and rutile TiO2 nanoparticles in photooxidation of polyurethane. Polym Testing 26:202–208CrossRefGoogle Scholar
  7. Chen H, Gai H, Yeung ES (2009) Inhibition of photobleaching and blue shift in quantum dots. Chem Commun: 1676–1678Google Scholar
  8. Coolen L, Spinicelli P, Hermier JP (2009) Emission spectrum and spectral diffusion of a single CdSe/ZnS nanocrystal measured by photon-correlation Fourier spectroscopy. J Opti Soc Am B-Opti Phys 26:1463–1468CrossRefGoogle Scholar
  9. Cordero S, Carson P, Estabrook R, Strouse G, Buratto S (2000) Photo-activated luminescence of CdSe quantum dot monolayers. J Phys Chem B 104:12137–12142CrossRefGoogle Scholar
  10. Dorfs D, Salant A, Popov I, Banin U (2008) ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system. Small 4:1319–1323CrossRefGoogle Scholar
  11. Duncan TV, Polanco MAM, Kim Y, Park S-J (2009) Improving the quantum yields of semiconductor quantum dots through photoenhancement assisted by reducing agents. J Phys Chem C 113:7561–7566CrossRefGoogle Scholar
  12. Elmalem E, Saunders AE, Costi R, Salant A, Banin U (2008) Growth of photocatalytic CdSe-Pt nanorods and nanonets. Adv Mater 20:4312–4317CrossRefGoogle Scholar
  13. Empedocles SA, Bawendi MG (1997) Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 278:2114–2117CrossRefGoogle Scholar
  14. Fitzpatrick JAJ, Andreko SK, Ernst LA, Waggoner AS, Ballou B, Bruchez MP (2009) Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett 9:2736–2741CrossRefGoogle Scholar
  15. Gai HW, Chen HP, Yeung ES (2009) Inhibition of photobleaching and blue shift in quantum dots. Chem Commun: 1676–1678Google Scholar
  16. Gudiksen MS, Maher KN, Ouyang L, Park H (2005) Electroluminescence from a single-nanocrystal transistor. Nano Lett 5:2257–2261CrossRefGoogle Scholar
  17. Guo WH, Li JJ, Wang YA, Peng XG (2003) Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. J Am Chem Soc 125:3901–3909CrossRefGoogle Scholar
  18. Hess BC, Okhrimenko IG, Davis RC, Stevens BC, Schulzke QA, Wright KC, Bass CD, Evans CD, Summers SL (2001) Surface transformation and photoinduced recovery in CdSe nanocrystals. Phys Rev Lett 86:3132–3135CrossRefGoogle Scholar
  19. Hikmet RAM, Chin PTK, Talapin DV, Weller H (2005) Polarized-light-emitting quantum-rod diodes. Adv Mater 17:1436–1440CrossRefGoogle Scholar
  20. Inamdar SN, Ingole PP, Haram SK (2008) Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry. ChemPhysChem 9:2574–2579CrossRefGoogle Scholar
  21. Jones M, Nedeljkovic J, Ellingson RJ, Nozik AJ, Rumbles G (2003) Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. J Phys Chem B 107:11346–11352CrossRefGoogle Scholar
  22. Kamat PV, Tvrdy K (2009) Substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces. J Phys Chem A 113:3765–3772CrossRefGoogle Scholar
  23. Kimura J, Uematsu T, Maenosono S, Yamaguchi Y (2004) Photoinduced fluorescence enhancement in CdSe/ZnS quantum dot submonolayers sandwiched between insulating layers: influence of dot proximity. J Phys Chem B 108:13258–13264CrossRefGoogle Scholar
  24. Kohary K, Gibson G (2011) Modelling photooxidation of CdSe ZnS nanocrystals. Physica Status Solidi 8:2569–2571CrossRefGoogle Scholar
  25. Kortan AR, Hull R, Opila RL, Bawendi MG, Steigerwald ML, Carroll PJ, Brus LE (1990) Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. J Am Chem Soc 112:1327–1332CrossRefGoogle Scholar
  26. Li JJ, Wang YA, Guo WZ, Keay JC, Mishima TD, Johnson MB, Peng XG (2003) Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc 125:12567–12575CrossRefGoogle Scholar
  27. Manner VW, Koposov AA, Szymanski P, Klimov VI, Sykora M (2012) Role of solvent-oxygen ion pairs in photooxidation of CdSe nanocrystal quantum dots. ACS Nano 6:2371–2377CrossRefGoogle Scholar
  28. Milliron DJ, Hughes SM, Cui Y, Manna L, Li J, Wang LW, Alivisatos AP (2004) Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430:190–195CrossRefGoogle Scholar
  29. Mokari T, Banin U (2003) Synthesis and properties of CdSe/ZnS core/shell nanorods. Chem Mater 15:3955–3960CrossRefGoogle Scholar
  30. Muller J, Lupton JM, Rogach AL, Feldmann J, Talapin DV, Weller H (2005) Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures. Phys Rev B 72:205339CrossRefGoogle Scholar
  31. Myung N, Bae Y, Bard AJ (2003) Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett 3:1053–1055CrossRefGoogle Scholar
  32. Nadeau JL, Kloepfer JA, Bradforth SE (2005) Photophysical properties of biologically compatible CdSe quantum dot structures. J Phys Chem B 109:9996–10003CrossRefGoogle Scholar
  33. Nazzal AY, Qu LH, Peng XG, Xiao M (2003) Photoactivated CdSe nanocrystals as nanosensors for gases. Nano Lett 3:819–822CrossRefGoogle Scholar
  34. Nirmal M, Dabbousi B, Bawendi M, Macklin J, Trautman J, Harris T, Brus L (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383:802–804CrossRefGoogle Scholar
  35. Ozasa K, Nemoto S, Maeda M, Hara M (2007) Excitation-wavelength-dependent photoluminescence evolution of CdSe/ZnS nanoparticles. J Appl Phys 101:103503CrossRefGoogle Scholar
  36. Pan D, Wang Q, Jiang S, Ji X, An L (2005) Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core–shell nanocrystals via a novel two phase thermal approach. Adv Mater 17:176–179CrossRefGoogle Scholar
  37. Peng XG, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019–7029CrossRefGoogle Scholar
  38. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos A (2000) Shape control of CdSe nanocrystals. Nature 404:59–61CrossRefGoogle Scholar
  39. Peterson JJ, Krauss TD (2006) Photobrightening and photodarkening in PbS quantum dots. Phys Chem Chem Phys 8:3851–3856CrossRefGoogle Scholar
  40. Reiss P, Bleuse J, Pron A (2002) Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett 2:781–784CrossRefGoogle Scholar
  41. Reiss P, Protiere M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5:154–168CrossRefGoogle Scholar
  42. Sallen G, Tribu A, Aichele T, Andre R, Besombes L, Bougerol C, Richard M, Tatarenko S, Kheng K, Poizat JP (2010) Subnanosecond spectral diffusion measurement using photon correlation. Nat Photo 4:696–699CrossRefGoogle Scholar
  43. Scholes GD (2008) Controlling the optical properties of inorganic nanoparticles. Adv Funct Mater 18:1157–1172CrossRefGoogle Scholar
  44. Sitt A, Sala FD, Menagen G, Banin U (2009) Multiexciton engineering in seeded core/shell nanorods: Transfer from type-I to quasi-type-II regimes. Nano Lett 9:3470–3476CrossRefGoogle Scholar
  45. Steiner D, Katz D, Millo O, Aharoni A, Kan S, Mokari T, Banin U (2004) Zero-dimensional and quasi one-dimensional effects in semiconductor nanorods. Nano Lett 4:1073–1077CrossRefGoogle Scholar
  46. Steiner D, Dorfs D, Banin U, Della Sala F, Manna L, Millo O (2008) Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy. Nano Lett 8:2954–2958CrossRefGoogle Scholar
  47. Suffern D, Cooper D, Carlini L, Parbhoo R, Bradforth S, Nadeau J (2009) Photoenhancement of quantum dots and conjugates measured by time-resolved spectroscopy. Colloidal Quantum Dots for Biomedical Applications IV, 7189. MJTM, OsinskiGoogle Scholar
  48. Talapin DV, Koeppe R, Gotzinger S, Kornowski A, Lupton JM, Rogach AL, Benson O, Feldmann J, Weller H (2003) Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett 3:1677–1681CrossRefGoogle Scholar
  49. Talapin DV, Shevchenko EV, Murray CB, Kornowski A, Forster S, Weller H (2004) CdSe and CdSe/CdS nanorod solids. J Am Chem Soc 126:12984–12988CrossRefGoogle Scholar
  50. Talapin DV, Nelson JH, Shevchenko EV, Aloni S, Sadtler B, Alivisatos AP (2007) Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett 7:2951–2959CrossRefGoogle Scholar
  51. Tang J, Marcus RA (2005) Single particle versus ensemble average: from power-law intermittency of a single quantum dot to quasistretched exponential fluorescence decay of an ensemble. J Chem Phys 123:204511CrossRefGoogle Scholar
  52. Tang J, Marcus RA (2006) Determination of energetics and kinetics from single-particle intermittency and ensemble-averaged fluorescence intensity decay of quantum dots. J Chem Phys 125:44703CrossRefGoogle Scholar
  53. van Sark W, Frederix P, Van den Heuvel DJ, Gerritsen HC, Bol AA, van Lingen JNJ, Donega CD, Meijerink A (2001) Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. J Phys Chem B 105:8281–8284CrossRefGoogle Scholar
  54. van Sark W, Frederix P, Bol AA, Gerritsen HC, Meijerink A (2002) Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots. ChemPhysChem 3:871–879CrossRefGoogle Scholar
  55. Varshni Y (1967) Temperature dependence of the energy gap in semiconductors. Physica 34:149–154CrossRefGoogle Scholar
  56. Vela J, Htoon H, Chen Y, Park Y-S, Ghosh Y, Goodwin PM, Werner JH, Wells NP, Casson JL, Hollingsworth JA (2010) Effect of shell thickness and composition on blinking suppression and the blinking mechanism in ‘giant’ CdSe/CdS nanocrystal quantum dots. J Biophoto 3:706–717CrossRefGoogle Scholar
  57. Wang LW, Li JB (2004) First-principles thousand-atom quantum dot calculations. Phys Rev B 69:153302CrossRefGoogle Scholar
  58. Wang XY, Zhang JY, Nazzal A, Xiao M (2003) Photo-oxidation-enhanced coupling in densely packed CdSe quantum-dot films. Appl Phys Lett 83:162–164CrossRefGoogle Scholar
  59. Wang Y, Tang Z, Correa-Duarte MA, Pastoriza-Santos I, Giersig M, Kotov NA, Liz-Marzan LM (2004) Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores. J Phys Chem B 108:15461–15469CrossRefGoogle Scholar
  60. Wen X, Davis JA, Van Dao L, Hannaford P, Coleman VA, Tan HH, Jagadish C, Koike K, Sasa S, Inoue M (2007) Temperature dependent photoluminescence in oxygen ion implanted and rapid thermally annealed ZnO/ZnMgO multiple quantum wells. Appl Phys Lett 90:221914CrossRefGoogle Scholar
  61. Wen X, Sitt A, Yu P, Toh YR, Tang J (2012) Temperature dependent spectral properties of type-I and quasi type-II CdSe/CdS dot-in-rod nanocrystals. Phys Chem Chem Phys 14:3505–3512CrossRefGoogle Scholar
  62. Zhang Y, He J, Wang P-N, Chen J-Y, Lu Z-J, Lu D-R, Guo J, Wang C–C, Yang W-L (2006) Time-dependent photoluminescence blue shift of the quantum dots in living cells: effect of oxidation by singlet oxygen. J Am Chem Soc 128:13396–13401CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Research Center for Applied SciencesAcademia SinicaTaipeiTaiwan
  2. 2.The Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalemIsrael

Personalised recommendations