Skip to main content
Log in

Preparation of cytocompatible luminescent and magnetic nanohybrids based on ZnO, Zn0.95Ni0.05O and core@shell ZnO@Fe2O3 polymer grafted nanoparticles for biomedical imaging

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

ZnO, Zn0.95Ni0.05O and core@shell ZnO@γ-Fe2O3 nanoparticles (NPs) have been prepared by forced hydrolysis in polyol medium and then coated via the “grafting from” approach with poly(sodium-4-styrenesulfonate) and poly(sodium-4-styrenesulfonate–co–sodium methacrylate) in the case of ZnO. The surface-initiated atom transfer radical polymerization occurred from the surface-functionalized NPs with α-bromoisobutyric acid as initiator. The polymer chains were grown from the surface to yield hybrid NPs with a 1–3-nm thick organic shell. FT-IR, TGA and electron microscopy evidenced the presence of a polymer layer on the surface of NPs. Magnetic and optical properties of bare and coated NPs have been measured. Eventually, the weak cytotoxicity of coated NPs on human endothelial cell allows considering their potentialities as new tools for nanomedicine and biomedical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almeida JPM, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine 6(5):815–835

    Article  CAS  Google Scholar 

  • Bach LG, Islam MR, Kim JT, Seo S, Lim KT (2012) Encapsulation of Fe3O4 magnetic nanoparticles with poly(methyl methacrylate) via surface functionalized thiol-lactam initiated radical polymerization. Appl Surf Sci 258(7):2959–2966

    Article  CAS  Google Scholar 

  • Bakand S, Winder C, Khalil C, Hayes A (2006) An experimental in vitro model for dynamic direct exposure of human cells to airborne contaminants. Toxicol Lett 165(1):1

    Article  CAS  Google Scholar 

  • Balti I, Mezni A, Dakhlaoui-Omrani A, Leone P, Viana B, Brinza O, Smiri LS, Jouini N (2011) Comparative study of Ni- and Co-substituted ZnO nanoparticles: synthesis, optical, and magnetic properties. J Phys Chem C 115(32):15758–15766

    Article  CAS  Google Scholar 

  • Berlot-Moirez S, Pavon-Djavid G, Montdargent B, Migonney V (2002) Modulation of Staphylococcus aureus adhesion by biofunctional copolymers derived from polystyrene. ITBM-RBM 23(2):102–108

    Article  Google Scholar 

  • Brusentsov NA, Gogosov VV, Brusentsova TN, Sergeev AV, Jurchenko NY, Kuznetsov AA, Kuznetsov OA, Shumakov LI (2001) Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro. J Magn Magn Mater 225(1–2):113

    Article  CAS  Google Scholar 

  • Bylander EG (1978) Surface effects on low-energy cathodoluminescence of zinc-oxide. J Appl Phys 49(3):1188–1195

    Article  CAS  Google Scholar 

  • Chandra S, Barick KC, Bahadur D (2011) Oxide and hybrid nanostructures for therapeutic applications. Adv Drug Deliv Rev 63(14):1267–1281

    Article  CAS  Google Scholar 

  • Chen GJ, Wang LF (2011) Design of magnetic nanoparticles-assisted drug delivery system. Curr Pharm Des 17(22):2331–2351

    Article  CAS  Google Scholar 

  • Chen T-J, Cheng T-H, Hung Y-C, Lin K-T, Liu G-C, Wang Y-M (2008) Targeted folic acid-PEG nanoparticles for noninvasive imaging of folate receptor by MRI. J Biomed Mater Res Part A 87A(1):165–175

    Article  CAS  Google Scholar 

  • Dakhlaoui A, Jendoubi M, Smiri LS, Kanaev A, Jouini N (2009) Synthesis, characterization and optical properties of ZnO nanoparticles with controlled size and morphology. J Cryst Growth 311(16):3989

    Article  CAS  Google Scholar 

  • Dechsakulthorn F, Hayes A, Bakand S, Joeng L, Winder C (2007) In vitro cytotoxicity assessment of selected nanoparticles using human skin fibroblasts. AATEX Proceedings of 6th world congress on alternatives and animal use in the life sciences, Tokyo 14, pp 397–400, August 21–25

  • Donadel K, Felisberto MDV, Favere VT, Rigoni M, Batistela NJ, Laranjeira MCM (2008) Synthesis and characterization of the iron oxide magnetic particles coated with chitosan biopolymer. Mater Sci Eng C 28(4):509–514

    Article  CAS  Google Scholar 

  • Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44(10):925–935

    Article  CAS  Google Scholar 

  • Gaceur M, Giraud M, Hemadi M, Nowak S, Menguy N, Quisefit J, David K, Jahanbin T, Benderbous S, Boissière M, Ammar S (2012) Polyol-synthesized Zn0.9Mn0.1S nanoparticles as potential luminescent and magnetic bimodal imaging probes: synthesis, characterization, and toxicity study. J Nanopart Res 14(7):1–15

    Article  Google Scholar 

  • Gerritsen M, Kros A, Sprakel V, Lutterman JA, Nolte RJM, Jansen JA (2000) Biocompatibility evaluation of sol–gel coatings for subcutaneously implantable glucose sensors. Biomaterials 21(1):71–78

    Article  CAS  Google Scholar 

  • Gilleo MA (1958) Superexchange interaction energy for Fe3+–O2–Fe3+ linkages. Phys Rev 109:777–781

    Article  CAS  Google Scholar 

  • Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115(3):403–409

    Article  CAS  Google Scholar 

  • Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun (Camb) 9:941–949

    Article  Google Scholar 

  • Hiura TS, Li N, Kaplan R, Horwitz M, Seagrave JC, Nel AE (2000) The role of a mitochondrial pathway in the induction of apoptosis by chemicals extracted from diesel exhaust particles. J Immunol 165(5):2703–2711

    CAS  Google Scholar 

  • Jiang JZ, Marup S (1997) Correlation between peak and median blocking temperatures by magnetization measurement on isolated ferromagnetic and antiferromagnetic particle systems. Nanostruct Mater 9(18):375–378

    Article  CAS  Google Scholar 

  • Kamiya H, Iijima M (2010) Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media. Sci Technol Adv Mater 11(4):1–7

    Google Scholar 

  • Kumar S, Singh V, Aggarwal S, Mandal UK, Kotnala RK (2012) Monodisperse Co, Zn-Ferrite nanocrystals: controlled synthesis, characterization and magnetic properties. J Magn Magn Mater 324(22):3683–3689

    Article  CAS  Google Scholar 

  • Lee NY, Lee KJ, Lee C, Kim JE, Park HY, Kwak DH, Lee HC, Lim H (1995) Determination of conduction-band tail and fermi energy of heavily Si-doped gas by room-temperature photoluminescence. J Appl Phys 78(5):3367–3370

    Article  CAS  Google Scholar 

  • Louie AY (2010) Multimodality imaging probes: design and challenges. Chem Rev 110(5):3146–3195

    Article  CAS  Google Scholar 

  • Lu XM, Jiang RC, Fan QL, Zhang L, Zhang HM, Yang MH, Ma YW, Wang LH, Huang W (2012) Fluorescent-magnetic poly(poly(ethyleneglycol)monomethacrylate)-grafted Fe3O4 nanoparticles from post-atom-transfer-radical-polymerization modification: synthesis, characterization, cellular uptake and imaging. J Mater Chem 22(14):6965–6973

    Article  CAS  Google Scholar 

  • Mao X, Zhong W, Du Y (2008) Ferromagnetism of Ni cluster in Ni-doped ZnO by solid state reaction. J Magn Magn Mater 320(6):1102–1105

    Article  CAS  Google Scholar 

  • McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251

    Article  CAS  Google Scholar 

  • Molday RS, Mackenzie D (1982) Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J Immunol Method 52(3):353–367

    Article  CAS  Google Scholar 

  • Nasef MM, Saidi H, Nor HM (2000) Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films. III. Thermal stability of the membranes. J Appl Polym Sci 77(9):1877–1885

    Article  CAS  Google Scholar 

  • Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301

    Article  Google Scholar 

  • Park I-K, Ng C-P, Wang J, Chu B, Yuan C, Zhang S, Pun SH (2008) Determination of nanoparticle vehicle unpackaging by MR imaging of a T2 magnetic relaxation switch. Biomaterials 29(6):724–732

    Article  Google Scholar 

  • Peng X, Chen Y, Li F, Zhou W, Hu Y (2009) Preparation and optical properties of ZnO@PPEGMA nanoparticles. Appl Surf Sci 255(16):7158

    Article  CAS  Google Scholar 

  • Perez JM, Josephson L, O’Loughlin T, Hogemann D, Weissleder R (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20(8):816–820

    CAS  Google Scholar 

  • Poul L, Ammar S, Jouini N, Fiévet F, Villain F (2001) Metastable solid solutions in the system ZnO–Co–O: synthesis by hydrolysis in polyol medium and study of the morphological characteristics. Solid State Sci 3(1–2):31

    Article  CAS  Google Scholar 

  • Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57(3):397–430

    Article  CAS  Google Scholar 

  • Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38(25):10363–10372

    Article  CAS  Google Scholar 

  • Salgueirino-Maceira V, Correa-Duarte MA, Lopez-Quintela MA, Rivas J (2009) Advanced hybrid nanoparticles. J Nanosci Nanotechnol 9(6):3684–3688

    Article  CAS  Google Scholar 

  • Sasaki T, Iwasaki N, Kohno K, Kishimoto M, Majima T, Nishimura S-I, Minami A (2008) Magnetic nanoparticles for improving cell invasion in tissue engineering. J Biomed Mater Res Part A 86A(4):969–978

    Article  CAS  Google Scholar 

  • Schwartz DA, Kittilstved KR, Gamelin DR (2004) Above-room-temperature ferromagnetic Ni2+-doped ZnO thin films prepared from colloidal diluted magnetic semiconductor quantum dots. Appl Phys Lett 85(8):1395–1397

    Article  CAS  Google Scholar 

  • Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185(3):211–218

    Article  CAS  Google Scholar 

  • Shen T, Weissleder R, Papisov M, Bogdanov A, Brady TJ (1993) Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med 29(5):599–604

    Article  CAS  Google Scholar 

  • Solanki A, Kim JD, Lee KB (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine (Lond) 3(4):567–578

    Article  CAS  Google Scholar 

  • Steitz B, Hofmann H, Kamau SW, Hassa PO, Hottiger MO, von Rechenberg B, Hofmann-Amtenbrink M, Petri-Fink A (2007) Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: size distribution, colloidal properties and DNA interaction. J Magn Magn Mater 311(1):300–305

    Article  CAS  Google Scholar 

  • Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE (1996) Mechanisms behind green photoluminescence in ZnO phosphor powders. J Appl Phys 79(10):7983–7990

    Article  CAS  Google Scholar 

  • Veiseh O, Gunn JW, Zhang MQ (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    Article  CAS  Google Scholar 

  • von Werne T, Patten TE (1999) Preparation of structurally well-defined polymer-nanoparticle hybrids with controlled/living radical polymerizations. J Am Chem Soc 121(32):7409–7410

    Article  Google Scholar 

  • von Werne T, Patten TE (2001) Atom transfer radical polymerization from nanoparticles: ‰ a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/living radical polymerizations from surfaces. J Am Chem Soc 123(31):7497

    Article  Google Scholar 

  • Wang J-S, Matyjaszewski K (1995) Controlled/living radical polymerization. halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 28(23):7901

    Article  CAS  Google Scholar 

  • Wang Y, Teng XW, Wang JS, Yang H (2003) Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core-shell nanoparticles. Nano Lett 3(6):789–793

    Article  CAS  Google Scholar 

  • Xiong HM (2010) Photoluminescent ZnO nanoparticles modified by polymers. J Mater Chem 20(21):4251–4262

    Article  CAS  Google Scholar 

  • Xiong HM, Xu Y, Ren OG, Xia YY (2008) Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging. J Am Chem Soc 130(24):7522

    Article  CAS  Google Scholar 

  • Yang JC, Jablonsky MJ, Mays JW (2002) NMR and FT-IR studies of sulfonated styrene-based homopolymers and copolymers. Polymer 43(19):5125–5132

    Article  CAS  Google Scholar 

  • Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561

    Article  CAS  Google Scholar 

  • Zheng H, Chen GC, Song FM, DeLouise LA, Lou ZY (2011) The cytotoxicity of OPA-modified CdSe/ZnS core/shell quantum dots and its modulation by silibinin in human skin cells. J Biomed Nanotechnol 7(5):648–658

    Article  CAS  Google Scholar 

  • Zhou WH, Chen YW, Wang XF, Guo ZP, Hu YH (2011) Synthesis of Fe3O4@PbS hybrid nanoparticles through the combination of surface-initiated atom transfer radical polymerization and acidolysis by H2S. J Nanosci Nanotechnol 11(1):98–105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by “Institut français de cooperation en Tunisie (IFC)”. The authors would like to thank Mr O. Brinza (Laboratoire de Sciences des Procédés et des Matériaux, CNRS UPR 3407, University Paris 13) for his help and expertise in TEM. We would like to express our thanks to the Cellular imaging platform of the IFR02 (Institut Claude Bernard/Xavier Bichat, Faculty of Medicine,University Paris Diderot) and P. Aschehoug (Laboratoire de Chimie Appliquée de l’Etat Solide, ENSCP, Paris) for the PL measurement. Authors thank Alain Derory, IPCMS UMR CNRS—University of Strasbourg, France, for technical assistance in magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Chaubet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 240 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balti, I., Barrère, A., Gueguen, V. et al. Preparation of cytocompatible luminescent and magnetic nanohybrids based on ZnO, Zn0.95Ni0.05O and core@shell ZnO@Fe2O3 polymer grafted nanoparticles for biomedical imaging. J Nanopart Res 14, 1266 (2012). https://doi.org/10.1007/s11051-012-1266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1266-x

Keywords

Navigation