Skip to main content
Log in

New efficient five-input majority gate for quantum-dot cellular automata

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A novel fault-tolerant five-input majority gate for quantum-dot cellular automata is presented. Quantum-dot cellular automata (QCA) is an emerging technology which is considered to be presented in future computers. Two principle logic elements in QCA are “majority gate” and “inverter.” In this paper, we propose a new approach to the design of fault-tolerant five-input majority gate by considering two-dimensional arrays of QCA cells. We analyze fault tolerance properties of such block five-input majority gate in terms of misalignment, missing, and dislocation cells. Some physical proofs are used for verifying five-input majority gate circuit layout and functionality. Our results clearly demonstrate that the redundant version of the block five-input majority gate is more robust than the standard style for this gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armstrong CD, Humphreys WM (2003a) The development of design tools for fault tolerant quantum dot cellular automata based logic. 2nd international workshop on quantum dots for quantum computing and classical size effect circuits, University of Notre Dame, Notre Dame, 7–9 Aug 2003

  • Armstrong CD, Humphreys WM, Fijany A (2003b) The design of fault tolerant quantum dot cellular automata based logic. 11th NASA symposium on VLSI design, 28–29 May 2003

  • Azghadi MR, Kavehei O, Navi K (2007) A novel design for quantum-dot cellular automata cells and full-adders. J Appl Sci 7:3460–3468

    Article  CAS  Google Scholar 

  • Beard MJ (2006) Design and simulation of fault-tolerant quantum-dot cellular automata (QCA) NOT gates. M. S. Thesis, Wichita State University

  • Dalui M, Sen B, Sikdar BK (2010) Fault tolerant QCA logic design with coupled majority-minority gate. Int J Comput Appl 1(29):81–87

    Google Scholar 

  • Dermott MC, Lillian C (1984) Research on conceptual understanding in mechanics. Phys Today 37(7):24–32

    Article  Google Scholar 

  • Farazkish R, Sayedsalehi S, Navi K (2012) Novel design for quantum dots cellular automata to obtain fault-tolerant majority gate. J Nanotechnol 2012(2012):1–7. doi:10.1155/2012/943406

    Google Scholar 

  • Farazkish R, Azghadi MR, Navi K, Haghparast M (2008) New method for decreasing the number of quantum dot cells in QCA circuits. World Appl Sci J 6:793–802

    Google Scholar 

  • Farazkish R, Khodaparast F, Navi K, Jalali A (2010) Design and characterization of a novel inverter for nanoelectronic circuits. International conference on nanotechnology: fundamentals and applications. Ottawa, Ontario, Canada, 4–6 Aug 2010, Paper No. 219

  • Fijany A, Toomarian BN (2001) J Nanopart Res 3:27–37

    Article  CAS  Google Scholar 

  • Halliday D, Resnick A (2004) Fundamentals of Physics Part 1 (Chapters 3–6), 7th edn. Wiley, New York

  • Halloun I, Hestenes D (1985) Common sense concepts about motions. Am J Phys 53:1056–1064

    Article  Google Scholar 

  • Huang J, Momenzadeh M, Tahoori MB, Lombardi F (2004) Design and characterization of an and-or-inverter (AOI). Gate for QCA implementation GLSVLSI, Boston, 26–28 Apr 2004

  • Lent CS, Tougaw PD (1993) Lines of interacting quantum-dot cells: a binary wire. J Appl Phys 74:6227–6233

    Article  CAS  Google Scholar 

  • Lent CS, Tougaw PD (1996) Dynamic behavior of quantum cellular automata. J Appl Phys 80(8):4722–4736

    Article  Google Scholar 

  • Navi K, Moayeri M, Faghih Mirzaee R, Hashemipour o, Mazloom Nezhad B (2009) Two new low-power full-adders based on majority-not gates. Microelectron J 40:126–130

    Article  Google Scholar 

  • Navi K, Farazkish R, Sayedsalehi S, Azghadi MR (2010a) A new quantum-dot cellular automata full-adder. Elsevier Microelectron J. doi:10.1016/j.mejo.2010.07.003

    Google Scholar 

  • Navi K, Sayedsalehi S, Farazkish R, Azghadi MR (2010b) Five-input majority gate a new device for quantum-dot cellular automata. J Comput Theor Nanosci 7:1546–1553

    Article  CAS  Google Scholar 

  • Orlov AO, Amlani I, Bernstein GH, Lent CS, Snider GL (1997) Realization of a functional cell for quantum-dot cellular automata. Science 277:928–930

    Article  CAS  Google Scholar 

  • Sayedsalehi S, Moaiyeri MH, Navi K (2011) Novel efficient adder circuits for quantum-dot cellular automata. J Comput Theor Nanosci 8:1769–1775

    Article  CAS  Google Scholar 

  • Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75:1818–1825

    Article  Google Scholar 

  • Zhang R, Walnut K, Wang W, Jullien G (2004) A method of majority logic reduction for quantum cellular automata. IEEE Trans Nanotechnol 3:443–450

    Article  Google Scholar 

  • Zhi H, Zhang Q, Haruehanroengra S, Wang W (2006) Logic optimization for majority gate based nanoelectronic circuits. In: Proceedings of international symposium on circuits and systems ISCAS, pp 1307–1310

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Farazkish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farazkish, R., Navi, K. New efficient five-input majority gate for quantum-dot cellular automata. J Nanopart Res 14, 1252 (2012). https://doi.org/10.1007/s11051-012-1252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1252-3

Keywords

Navigation