Skip to main content
Log in

Instant and supersaturated dissolution of naproxen and sesamin (poorly water-soluble drugs and supplements) nanoparticles prepared by continuous expansion of liquid carbon dioxide solution through long dielectric nozzle

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) of naproxen (a nonsteroidal anti-inflammatory drug, BCS Class 2) and sesamin (a poorly water-soluble lignan) were investigated. By applying a newly developed rapid expansion system of liquid carbon dioxide solutions equipped with a dielectric nozzle, well-separated and fine both naproxen NPs (averaged particle size (APS) = 46.9 nm) and sesamin NPs (APS = 60.2 nm) were obtained without heating, surfactants, and co-solvents. Obtained naproxen and sesamin NPs had large surface/weight ratio, therefore, they showed instant dissolution to water until about ten percent higher than the saturated concentrations. In addition, the technique developed in the study has big advantage on producing especially drug NPs because the NPs produced by the method never includes neither poisonous additives (especially co-solvents and detergents) nor thermally denatured compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Amidon GL, Lennernäs H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12(3):413–420

    Article  CAS  Google Scholar 

  • Bertram SH, Van der Steur JPK, Aterman HI (1928) Biochem Z 197:1

    CAS  Google Scholar 

  • Cansell F, Aymonier C, Loppinet-Serani A (2003) Review on materials science and supercritical fluids. Curr Opin Solid State Mater Sci 7(4–5):331–340

    Article  CAS  Google Scholar 

  • Cerdeira AM, Mazzotti M, Gander B (2010) Miconazole nanosuspensions: influence of formulation variables on particle size reduction and physical stability. Int J Pharm 396(1–2):210–218

    Article  CAS  Google Scholar 

  • Chiou WL, Riegelman S (1971) Pharmaceutical applications of solid dispersion systems. J Pharm Sci 60(9):1281–1302

    Article  CAS  Google Scholar 

  • Craig DQM (2002) The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm 231(2):131–144

    Article  CAS  Google Scholar 

  • Hwang J, Rodgers K, Oliver JC, Schleup T (2008) α-Methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for rheumatoid arthritis therapy. Int J Nanomed 3(3):359–371

    CAS  Google Scholar 

  • Imran ul-haq M, Chasovskikh E, Signorell R (2010) Phase behavior of ketoprofen-poly(lactic acid) drug particles formed by rapid expansion of supercritical solutions. Langmuir 26(18):14951–14957

    Article  CAS  Google Scholar 

  • Jinno J-i, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M, Toguchi H, Liversidge GG, Higaki K, Kimura T (2006) Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release 111(1–2):56–64

    Article  CAS  Google Scholar 

  • Jung J, Perrut M (2001) Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids 20(3):179–219

    Article  CAS  Google Scholar 

  • Junghanns J-UAH, Mueller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed 3(3):295–309

    CAS  Google Scholar 

  • Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 62(1):3–16

    Article  CAS  Google Scholar 

  • Kenyon CJ, Hooper G, Tierney D, Butler J, Devane J, Wilding IR (1995) The effect of food on the gastrointestinal transit and systemic absorption of naproxen from a novel sustained release formulation. J Control Release 34(1):31–36

    Article  CAS  Google Scholar 

  • Laine L, Sloane R, Ferretti M, Cominelli F (1995) A randomized, double-blind comparison of placebo, etodolac, and naproxen on gastrointestinal injury and prostaglandin production. Gastrointest Endosc 42(5):428–433

    Article  CAS  Google Scholar 

  • Liversidge GG, Conzentino P (1995) Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharm 125(2):309–313

    Article  CAS  Google Scholar 

  • Liversidge GG, Cundy KC (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 125(1):91–97

    Article  CAS  Google Scholar 

  • Löbenberg R, Amidon GL (2000) Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm 50(1):3–12

    Article  Google Scholar 

  • Merisko-Liversidge E, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 18(2):113–120

    Article  CAS  Google Scholar 

  • Moribe K, Shibata M, Furuishi T, Higashi K, Tomono K, Yamamoto K (2010) Effect of particle size on skin permeation and retention of piroxicam in aqueous suspension. Chem Pharm Bull 58(8):1096–1099

    Article  CAS  Google Scholar 

  • Peinemann K (1896) Arch Pharm 234:238

    Google Scholar 

  • Peñalvo J, Hopia A, Adlercreutz H (2006) Effect of sesamin on serum cholesterol and triglycerides levels in LDL receptor-deficient mice. Eur J Nutr 45(8):439–444

    Article  Google Scholar 

  • Phillips EM, Stella VJ (1993) Rapid expansion from supercritical solutions: application to pharmaceutical processes. Int J Pharm 94(1–3):1–10

    Article  CAS  Google Scholar 

  • Poling BE, Prausnitz JM, O’Coneell JP (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Rao CBS (ed) (1978) Chemistry of lignans. Andhra University Press, Visakhapatnam

    Google Scholar 

  • Shao N, Su Y, Hu J, Zhang J, Zhang H, Cheng Y (2011) Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity. Int J Nanomed 6:3361–3372

    CAS  Google Scholar 

  • Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25(6):1509

    Article  CAS  Google Scholar 

  • Subramaniam B, Rajewski RA, Snavely K (1997) Pharmaceutical processing with supercritical carbon dioxide. J Pharm Sci 86(8):885–890

    Article  CAS  Google Scholar 

  • Tanaka N, Imai K, Okimoto K, Ueda S, Tokunaga Y, Ohike A, Ibuki R, Higaki K, Kimura T (2005) Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine. J Control Release 108(2–3):386–395

    Article  CAS  Google Scholar 

  • Tanaka N, Imai K, Okimoto K, Ueda S, Tokunaga Y, Ibuki R, Higaki K, Kimura T (2006) Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine (II): in vivo evaluation. J Control Release 112(1):51–56

    Article  CAS  Google Scholar 

  • Tanaka Y, Inkyo M, Yumoto R, Nagai J, Takano M, Nagata S (2009) Nanoparticulation of poorly water soluble drugs using a wet-mill process and physicochemical properties of the nanopowders. Chem Pharm Bull 57(10):1050–1057

    Article  CAS  Google Scholar 

  • Tozuka Y, Miyazaki Y, Takeuchi H (2010) A combinational supercritical CO2 system for nanoparticle preparation of indomethacin. Int J Pharm 386(1–2):243–248

    Article  CAS  Google Scholar 

  • Uchida H, Manaka A, Matsuoka M, Takiyama H (2004) Growth phenomena of single crystals of naphthalene in supercritical carbon dioxide. Cryst Growth Des 4(5):937–942

    Article  CAS  Google Scholar 

  • Yamashita K, Nakate T, Okimoto K, Ohike A, Tokunaga Y, Ibuki R, Higaki K, Kimura T (2003) Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm 267(1–2):79–91

    Article  CAS  Google Scholar 

  • Yeo SD, Kiran E (2005) Formation of polymer particles with supercritical fluids: a review. J Supercrit Fluids 34(3):287–308

    Article  CAS  Google Scholar 

  • York P (1999) Strategies for particle design using supercritical fluid technologies. Pharm Sci Technol Today 2(11):430–440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Scientific Research Grant from the Ministry of Education, Science, Sports, and Culture of Japan. TA thanks grant-in-aid for Challenging Exploratory Research No. 24655113 for their financial support. The authors thank Prof. H. Yabu (IMRAM, Tohoku University) for his advice on SEM measurement.

Conflicts of interest

The authors report no conflicts of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Arita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arita, T., Manabe, N. & Nakahara, K. Instant and supersaturated dissolution of naproxen and sesamin (poorly water-soluble drugs and supplements) nanoparticles prepared by continuous expansion of liquid carbon dioxide solution through long dielectric nozzle. J Nanopart Res 14, 1251 (2012). https://doi.org/10.1007/s11051-012-1251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1251-4

Keywords

Navigation