Topological investigation of electronic silicon nanoparticulate aggregates using ultra-small-angle X-ray scattering

  • E. O. Jonah
  • D. T. Britton
  • P. Beaucage
  • D. K. Rai
  • G. Beaucage
  • B. Magunje
  • J. Ilavsky
  • M. R. Scriba
  • M. Härting
Research Paper

Abstract

The network topology of two types of silicon nanoparticles, produced by high energy milling and pyrolysis of silane, in layers deposited from inks on permeable and impermeable substrates has been quantitatively characterized using ultra-small-angle X-ray scattering, supported by scanning electron microscopy observations. The milled particles with a highly polydisperse size distribution form agglomerates, which in turn cluster to form larger aggregates with a very high degree of aggregation. Smaller nanoparticles with less polydisperse size distribution synthesized by thermal catalytic pyrolysis of silane form small open clusters. The Sauter mean diameters of the primary particles of the two types of nanoparticles were obtained from USAXS particle volume to surface ratio, with values of ~41 and ~21 nm obtained for the high energy milled and pyrolysis samples, respectively. Assuming a log-normal distribution of the particles, the geometric standard deviation of the particles was calculated to be ~1.48 for all the samples, using parameters derived from the unified fit to the USAXS data. The flow properties of the inks and substrate combination lead to quantitative changes in the mean particle separation, with slowly curing systems with good capillary flow resulting in denser networks with smaller aggregates and better contact between particles.

Keywords

Ultra-small-angle X-ray scattering Semiconductor nanocomposites Network structures Fractals Printed electronics 

References

  1. Beaucage G (1995) Approximations leading to a unified exponential power-law approach to small-angle scattering. J Appl Cryst 28:717–728CrossRefGoogle Scholar
  2. Beaucage G (2004) Determination of branch fraction and minimum dimension of mass- fractal aggregates. Phys Rev E 70(3):031401CrossRefGoogle Scholar
  3. Beaucage G (2008) Toward resolution of ambiguity for the unfolded state. Biophys J 95:503–509CrossRefGoogle Scholar
  4. Beaucage G, Kammler HK, Pratsinis SE (2004) Particle size distributions from small-angle scattering using global scattering functions. J App Cryst 37:523–535CrossRefGoogle Scholar
  5. Brasil AM, Farias TL, Carvalho MG, Koylu UO (2001) Numerical characterization of the morphology of aggregated particles. J Aerosol Sci 32:489–508CrossRefGoogle Scholar
  6. Britton DT, Härting M (2006) Printed nanoparticulate composites for silicon thick-film electronics. Pure Appl Chem 78:1723–1739CrossRefGoogle Scholar
  7. Britton DT, Odo EA, Goro Gonfa G, Jonah EO, Härting M (2009) Size distribution and surface characteristics of silicon nanoparticles. J Appl Cryst 42:448–456CrossRefGoogle Scholar
  8. Farias TL, Carvalho MG, Koylu UO, Faeth GM (1995) Computational evaluation of approximate Rayleigh-Debye-Gans/fractal-aggregate theory for the absorption and scattering properties of soot. J Heat Transf 117:152–159CrossRefGoogle Scholar
  9. Farias TL, Carvalho MG, Koylu UO (1996) Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates. Appl Optics 35:6560–6567CrossRefGoogle Scholar
  10. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–918CrossRefGoogle Scholar
  11. Harris JT, Hueso JL, Korgel BA (2010) Hydrogenated amorphous silicon (a-Si:H) colloids. Chem Mater 22:6378–6383CrossRefGoogle Scholar
  12. Härting M, Zhang J, Gamota DR, Britton DT (2009) Fully printed silicon field effect transistors. Appl Phy Lett 94(19):193509CrossRefGoogle Scholar
  13. Härting M, Goro Gonfa G, Odo EA, Scriba MR, Magunje B, van Staden MJ, Britton DT (2012) The stability and electrical activity of oxygen terminated silicon nanoparticle surfaces. (Submitted for publication)Google Scholar
  14. Holman ZC, Liu CY, Kortshagen UR (2010) Germanium and silicon nanocrystal thin-film field-effect transistors from solution. Nano Lett 10:2661–2666CrossRefGoogle Scholar
  15. Ilavsky J, Jemian PR (2009) Irena: tool suite for modeling and analysis of small-angle scattering. J Appl Cryst 42(2):347–353CrossRefGoogle Scholar
  16. Ilavsky J, Jemian PR, Allen AJ, Zhang F, Levine LE, Long GG (2009) Ultra-small angle X-ray scattering at the advanced photon source. J Appl Cryst 42(3):469–479Google Scholar
  17. Katz HE, Huang J (2009) Thin-film organic electronic devices. Ann Rev Mater Res 39:71–92CrossRefGoogle Scholar
  18. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45(4):574–588CrossRefGoogle Scholar
  19. Koch CC (1997) Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct Mater 9:13–22CrossRefGoogle Scholar
  20. Lake JA (1967) An iterative method of slit-correcting small angle X-ray data. Acta cryst 23(2):191–194CrossRefGoogle Scholar
  21. Meakin P (1983a) Diffusion-controlled cluster formation in two, three and four dimensions. Phys Rev A 27(1):604–607CrossRefGoogle Scholar
  22. Meakin P (1983b) Diffusion-controlled cluster formation in 2–6 dimensional space. Phys Rev A 27(3):1495–1507CrossRefGoogle Scholar
  23. Meakin P (1984) Computer simulation of Cluster–Cluster aggregation using linear trajectories: results from three-dimensional simulations and a comparison with aggregates formed using Brownian trajectories. J Colloid Interface Sci 102(2):505–512CrossRefGoogle Scholar
  24. Mountain RD, Mulholland GW (1988) Light scattering from simulated smoke agglomerates. Langmuir 4:1321–1326CrossRefGoogle Scholar
  25. Nelles J, Sendor D, Petrat FM, Simon U (2010) Electrical properties of surface functionalized silicon nanoparticles. J Nanopart Res 12:1367–1375CrossRefGoogle Scholar
  26. Porod G (1982) Small angle X-ray scattering. In: Glatter O, Kratky O (eds). Academic Press, London, pp 17–52Google Scholar
  27. Rai DK, Beaucage G, Jonah EO, Britton DT, Sukumaran S, Chopra S, Goro Gonfa G, Härting M (2012) Quantitative investigations of aggregate systems. J Chem Phys 137:044311CrossRefGoogle Scholar
  28. Ramachandran R, Beaucage G, Kulkarni AS, McFaddin D, Merrick-Mack J, Galiatsatos V (2008) Persistence length of short-chain branched polyethylene. Macromolecules 41(24):9802–9806CrossRefGoogle Scholar
  29. Schmidt PW (1991) Small-angle scattering studies of disordered, porous and fractal systems. J Appl Cryst 24:414–435CrossRefGoogle Scholar
  30. Scriba MR, Britton DT, Härting M (2011) Electrically active, doped monocrystalline silicon nanoparticles produced by hot wire thermal catalytic pyrolysis. Thin Solid Films 519:4491–4494CrossRefGoogle Scholar
  31. Scriba MR, Britton DT, Härting M (2012). In: Mathur S, Sinha Ray S, Widjaja S, Singh D (eds) Nanostructured materials & nanotechnology VI: ceramic engineering and science proceedings, vol 33. Wiley, Hoboken, NJ (in press)Google Scholar
  32. Shirahata N, Linford MR, Furumi S, Pei L, Sakka Y, Gates RJ, Asplund MC (2009) Laser-derived one-pot synthesis of silicon nanocrystals terminated with organic monolayers. Chem Commun 31:4648–4686Google Scholar
  33. Singh TB, Sariciftci NS (2006) Progress in plastic electronic devices. Ann Rev Mater Res 36:199–230CrossRefGoogle Scholar
  34. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290(5499):2123–2126CrossRefGoogle Scholar
  35. Stauffer D (1979) Phys Rep Rev Sect Phys Lett 54(1):1–74Google Scholar
  36. Sun B, Sirringhaus H (2005) Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett 5:2408–2413CrossRefGoogle Scholar
  37. Sun J, Zhang B, Katz HE (2011) Materials for printable, transparent, and low-voltage transistors. Adv Func Mater 21(1):29–45CrossRefGoogle Scholar
  38. Sutherland DN (1967) A theoretical model of floc structure. J Colloid Interface Sci 25:373–380CrossRefGoogle Scholar
  39. Vold MJ (1963) Computer simulation of floc formation in a colloidal suspension. J Colloid Sci 18:684–695CrossRefGoogle Scholar
  40. Witten TA Jr, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47(19):1400–1403CrossRefGoogle Scholar
  41. Zallen R (1983) The physics of amorphous solids. Wiley, LondonGoogle Scholar
  42. Zhou X, Uchida K, Mizuta H, Oda S (2009) Electron transport in surface oxidized Si nanocrystal ensembles with thin film transistor structure. J Appl Phys 106(4):044511–044516CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • E. O. Jonah
    • 1
  • D. T. Britton
    • 1
  • P. Beaucage
    • 2
  • D. K. Rai
    • 2
  • G. Beaucage
    • 2
  • B. Magunje
    • 1
  • J. Ilavsky
    • 3
  • M. R. Scriba
    • 1
    • 4
  • M. Härting
    • 1
  1. 1.Department of Physics, NanoSciences Innovation CentreUniversity of Cape TownRondeboschSouth Africa
  2. 2.Department of Chemical and Materials EngineeringUniversity of CincinnatiCincinnatiUSA
  3. 3.X-ray Science DivisionAdvanced Photon Source, Argonne National LaboratoryArgonneUSA
  4. 4.CSIRNational Centre for Nano-Structured MaterialsPretoriaSouth Africa

Personalised recommendations