Ag/TiO2 core–shell nanocables prepared with a one-step polyol process

  • Jinting Jiu
  • Masaya Nogi
  • Tohru Sugahara
  • Katsuaki Suganuma
  • Masahiko Tsujimoto
  • Seiji Isoda
Research Paper


One-dimensional (1D) Ag/TiO2 core–shell nanocables have been synthesized with a facile polyol process by reducing AgNO3 and hydrolysis of titanium tetraisopropoxide without the need for any templates and capping agents under atmospheric conditions. The morphology of the Ag/TiO2 core–shell nanocables produced in this way is as either linear or spiral particles. The former are composed of an Ag rod core, and the later are aggregates of Ag nanoparticles which are aligned into an ID structure. The nanocables are about 50 and 150 nm in diameter for the linear and spiral particles, respectively, and over 30 μm in length. The absorption peaks of these Ag/TiO2 core–shell nanocables are significantly red-shifted comparing with those of uncoated pure silver nanowires. On the basis of the experimental results, a micro-reactor oxide template mechanism has been proposed to explain the growth of Ag/TiO2 core–shell nanocables.


Synthesis Ag TiO2 Core–shell nanocables Polyol process Mechanism 



This work was part of the Development of Inverter Systems for Power Electronics project, supported by the New Energy and Industrial Technology Development Organization.


  1. Adachi M, Murata Y, Takao J, Jiu J, Sakamoto M, Wang F (2004) J Am Chem Soc 126:14943CrossRefGoogle Scholar
  2. Carroll KJ, Calvin S, Ekiert TF, Unruh KM, Carpenter EE (2010) Chem Mater 22:2175CrossRefGoogle Scholar
  3. Chen J, Wiley BJ, Xia Y (2007) Langmuri 23:4120CrossRefGoogle Scholar
  4. Chung SW, Yu JY, Heath JR (2000) Appl Phys Lett 76:2068CrossRefGoogle Scholar
  5. Correa-Duarte LM, Giersig M, Liz-Marzan LM (1998) Chem Phys Lett 286:497CrossRefGoogle Scholar
  6. Du J, Zhang J, Liu Z, Han B, Jiang T, Huang Y (2006) Langmuri 22:1307CrossRefGoogle Scholar
  7. Fievet F, Lagier JP, Figlarz M (1989) MRS Bull 14:29Google Scholar
  8. Jiu J, Murai K, Kim D, Kim K, Sugunuma K (2009) Mater Chem Phys 114:333CrossRefGoogle Scholar
  9. Ketchie WC, Murayama M, Davis RG (2007) J Catal 250:264CrossRefGoogle Scholar
  10. Liu Z, Elbert D, Chien C, Searson PC (2008) Nano Lett 8:2166CrossRefGoogle Scholar
  11. Mahshid S, Ghamsari MS, Askari M, Afshar N, Lahuti S (2006) Semicond Phys Quantum Electron Optoelectron 9:65Google Scholar
  12. Mayya KS, Gittins DU, Dibaj AM, Caruso F (2001a) Nano Lett 1:727CrossRefGoogle Scholar
  13. Mayya K, Gittins D, Caruso F (2001b) Chem Mater 13:3833CrossRefGoogle Scholar
  14. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultzb S (2002) J Chem Phys 116:6755CrossRefGoogle Scholar
  15. Morales AM, Lieber CM (1998) Science 279:208CrossRefGoogle Scholar
  16. Nadagouda MN, Varma RS (2007) Crys Growth Des 7:2582CrossRefGoogle Scholar
  17. Ni K, Chen L, Lu G (2008) Electrochem Commun 10:1027CrossRefGoogle Scholar
  18. Obare SO, Jana NR, Murphy CJ (2001) Nano Lett 1:601CrossRefGoogle Scholar
  19. Salgueirino-Macereira V, Correa-Duarte M (2007) Adv Mater 19:4131CrossRefGoogle Scholar
  20. Shi W, Peng H, Xu L, Wang N, Tang Y, Lee ST (2000) Adv Mater 12:1927CrossRefGoogle Scholar
  21. Sun Y, Mayers B, Herricks T, Xia Y (2003) Nano Lett 3:955CrossRefGoogle Scholar
  22. Walsh D, Mann S (1995) Nature 377:320CrossRefGoogle Scholar
  23. Yin Y, Lu Y, Sun Y, Xia Y (2002) Nano Lett 2:427CrossRefGoogle Scholar
  24. Zhang Y, Suenaga K, Colliex C, Iijima S (1998) Science 281:973CrossRefGoogle Scholar
  25. Zhao T, Fan J, Cui J, Liu J, Xu X, Zhu M (2011) Chem Phys Lett 501:414CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jinting Jiu
    • 1
  • Masaya Nogi
    • 1
  • Tohru Sugahara
    • 1
  • Katsuaki Suganuma
    • 1
  • Masahiko Tsujimoto
    • 2
  • Seiji Isoda
    • 2
  1. 1.The Institute of Scientific and Industrial Research (ISIR)Osaka UniversityOsakaJapan
  2. 2.Institute for Integrated cell-materials ScienceKyoto UniversityKyotoJapan

Personalised recommendations