Skip to main content
Log in

Polypyrrole-coated samarium oxide nanobelts: fabrication, characterization, and application in supercapacitors

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Polypyrrole-coated samarium oxide nanobelts were synthesized by the in situ chemical oxidative surface polymerization technique based on the self-assembly of pyrrole on the surface of the amine-functionalized Sm2O3 nanobelts. The morphologies of the polypyrrole/samarium oxide (PPy/Sm2O3) nanocomposites were characterized using transmission electron microscope. The UV–vis absorbance of these samples was also investigated, and the remarkable enhancement was clearly observed. The electrochemical behaviors of the PPy/Sm2O3 composites were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge. The results indicated that the PPy/Sm2O3 composite electrode was fully reversible and achieved a very fast Faradaic reaction. After being corrected into the weight percentage of the PPy/Sm2O3 composite at a current density of 20 mA cm−2 in a 1.0 M NaNO3 electrolyte solution, a maximum discharge capacity of 771 F g−1 was achieved in a half-cell setup configuration for the PPy/Sm2O3 composites electrode with the potential application to electrode materials for electrochemical capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aldea N, Turcu R, Nan A, Craciunescu I, Pana O, Cxie Y, Wu Z, Bica D, Vekas L, Matei F (2009) Investigation of nanostructured Fe3O4 polypyrrole core-shell composites by X-ray absorbtion spectroscopy and X-ray diffraction using synchrotron radiation. J Nanopart Res 11:1429–1439

    Article  CAS  Google Scholar 

  • Ashrafi A, Golozar MA, Mallakpour S (2006) Morphological investigations of polypyrrole coatings on stainless steel. Synth Met 156:1280–1285

    Article  CAS  Google Scholar 

  • Brédas JL, Street GB (1985) Polarons, bipolarons, and solitons in conducting polymers. Acc Chem Res 18:309–315

    Article  Google Scholar 

  • Brédas JL, Scott JC, Yakushi K, Street GB (1984) Polarons and bipolarons in polypyrrole: evolution of the band structure and optical spectrum upon doping. Phys Rev B: Condens Matter 30:1023–1025

    Article  Google Scholar 

  • Chu PP, Reddy MJ (2003) Sm2O3 composite PEO solid polymer electrolyte. J Power Sources 115:288–294

    Article  CAS  Google Scholar 

  • Geng JX, Zeng TY (2006) Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices. J Am Chem Soc 128:16827–16833

    Article  CAS  Google Scholar 

  • Hashmi SA, Latham RJ, Linford RG, Schlindwein WS (1998) Conducting polymer-based electrochemical redox supercapacitors using proton and lithium ion conducting polymer electrolytes. Polym Int 47:28–33

    Article  CAS  Google Scholar 

  • Ho KS, Hsieh TH, Kuo CW, Lee SW, Lin JJ, Huang YJ (2005) Effect of aniline formaldehyde resin on the conjugation length and structure of doped polyaniline: spectral studies. J Polym Sci, Part A: Polym Chem 43:3116–3125

    Article  CAS  Google Scholar 

  • Hu CC, Huang YH, Chang KH (2002) Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors. J Power Sources 108:117–127

    Article  CAS  Google Scholar 

  • Huang JY, Wang K, Wei ZX (2010) Conducting polymer nanowire arrays with enhanced electrochemical performance. J Mater Chem 20:1117–1121

    Article  CAS  Google Scholar 

  • Jang J, Yoon H (2004) Novel fabrication of size-tunable silica nanotube using a microemulsion-mediated sol-gel method. Adv Mater 16:799–802

    Article  CAS  Google Scholar 

  • Jang J, Bae J, Choi M, Yoon S-H (2005) Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor. Carbon 43:2730–2736

    Article  CAS  Google Scholar 

  • Jang J, Ha J, Lim B (2006) Synthesis and characterization of monodisperse silica-polyaniline core-shell nanoparticles. Chem Commun 1622–1624

  • Jiu HF, Ding JJ, Bao J, Zhang QJ, Gao C (2005) Combinatorial method for the study of new co-fluorescence enhancement system. Spectrochim Acta, Part A 61:3150–3154

    Article  Google Scholar 

  • Karim MR, Lim KT, Lee CJ, Bhuiyan MTI, Kim HJ, Park L-S, Lee MS (2007) Synthesis of core-shell silver–polyaniline nanocomposites by gamma radiolysis method. J Polym Sci, Part A: Polym Chem 45:5741–5747

    Article  CAS  Google Scholar 

  • Li L, Qin Z-Y, Liang X, Fan Q-Q, Lu Y-Q, Wu W-H, Zhu M-F (2009) Facile fabrication of uniform core-shell structured carbon nanotube-polyaniline nanocomposites. J Phys Chem C 113:5502–5507

    Article  CAS  Google Scholar 

  • Liu P (2008) Preparation and characterization of conducting polyaniline/silica nanosheet composites. Curr Opin Solid State Mater Sci 12:9–13

    Article  CAS  Google Scholar 

  • Mandic Z, Rokovic MK, Pokupcic T (2009) Polyaniline as cathodic material for electrochemical energy sources: the role of morphology. Electrochim Acta 54:2941–2950

    Article  CAS  Google Scholar 

  • Martinsa JI, Bazzaouia M, Reisa TC, Bazzaouib EA, Martinsc L (2002) Electrosynthesis of homogeneous and adherent polypyrrole coatings on iron and steel electrodes by using a new electrochemical procedure. Synth Met 129:221–228

    Article  Google Scholar 

  • Mi H, Zhang X, Ye X, Yang S (2008) Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapatitors. J Power Sour 176:403–409

    Article  CAS  Google Scholar 

  • Miomandre F, Chandezon F, Lama B, Besnardiere J, Routier M, Brosseau A, Audebert P (2011) Polypyrrole-silica core-shell nanocomposites: a new route towards active materials in dielectrophoretic displays. J Nanopart Res 13:879–886

    Article  CAS  Google Scholar 

  • Mo ZL, Sun YX, Chen H, Zhang P, Zuo DD, Liu YZ, Li HJ (2005) Preparation and characterization of a PMMA/Ce(OH)3, Pr2O3/graphite nanosheet composite. Polymer 46:12670–12676

    Article  CAS  Google Scholar 

  • Omastová M, Trchová M, Pionteck J, Prokeš J, Stejskal J (2004) Effect of polymerization conditions on the properties of polypyrrole prepared in the presence of sodium bis(2-ethylhexyl) sulfosuccinate. Synth Met 143:153–161

    Article  Google Scholar 

  • Park J-E, Atobe M, Fuchigami T (2005) Sonochemical synthesis of conducting polymer-metal nanoparticles nanocomposite. Eletrochim Acta 51:849–854

    Article  CAS  Google Scholar 

  • Roberts ME, Wheeler DR, McKenzie BB, Bunker BC (2009) High specific capacitance conducting polymer supercapacitor electrodes based on poly(tris(thiophenylphenyl)amine). J Mater Chem 19:6977–6979

    Article  CAS  Google Scholar 

  • Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sour 196:1–12

    Google Scholar 

  • Song G, Guo R (2007) Synthesis of polyaniline/NiO nanobelts by a self-assembly process. Synth Met 157:170–175

    Article  CAS  Google Scholar 

  • Tripathi SK, Kumar A, Hashmi SA (2006) Electrochemical redox supercapacitors using PVdF-HFP based gel electrolytes and polypyrrole as conducting polymer electrode. Solid State Ionics 177:2979–2985

    Article  CAS  Google Scholar 

  • Wang D-W, Li F, Zhao J, Ren W, Chen Z-G, Tan J, Wu Z-S, Gentle I, Lu GQ, Cheng HM (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752

    Article  CAS  Google Scholar 

  • Whitby RLD, Korobeinyk A, Mikhalovsky SV, Fukuda T, Maekawa T (2011) Morphological effects of single-layer graphene oxide in the formation of covalently bonded polypyrrole composites using intermediate diisocyanate chemistry. J Nanopart Res 13:4829–4837

    Article  CAS  Google Scholar 

  • Xu J, Li X, Liu J, Wang X, Peng Q, Li Y (2005) Solution route to inorganic nanobelt-conducting organic polymer core-shell nanocomposites. J Polym Sci, Part A: Polym Chem 43:2892–2900

    Article  CAS  Google Scholar 

  • Xu MW, Kong LB, Zhou WJ, Li HL (2007) Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141–19147

    Article  CAS  Google Scholar 

  • Yang C, Liu P (2009) Core-shell attapulgite@polypyrrole composite with well-defined corn cob-like morphology via self-assembling and in situ oxidative polymerization. Synth Met 159:2056–2062

    Article  CAS  Google Scholar 

  • Yang R, Evans DF, Christensen L, Hendrickson WA (1990) Scanning tunneling microscopy evidence of semicrystalline and helical conducting polymer structures. J Phys Chem B 94:6117–6122

    Article  CAS  Google Scholar 

  • Yang C-M, Weidanthaler C, Spliethoff B, Mayanna M, Schuth F (2005) Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor. Chem Mater 17:355–358

    Article  CAS  Google Scholar 

  • Yang CM, Kim YJ, Endo M, Kanoh H, Yudasaka M, Iijima S, Kaneko K (2007) Nanowindow-regulated specific. capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J Am Chem Soc 129:20–21

    Article  CAS  Google Scholar 

  • Yang C, Liu P, Zhao YQ (2010) Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage. Electrochim Acta 55:6857–6864

    Article  CAS  Google Scholar 

  • Yang C, Liu P, Wang TM (2011) Well-defined core-shell carbon black/polypyrrole nanocomposites for electrochemical energy storage. ACS Appl Mater Interfaces 3:1109–1114

    Article  CAS  Google Scholar 

  • Ye S, Lu Y (2008) Optical properties of Ag@polypyrrole nanoparticles calculated by Mie theory. J Phys Chem C 112:8767–8772

    Article  CAS  Google Scholar 

  • Ye S, Liu Y, Chen S, Liang S, McHale R, Ghasdian N, Lu Y, Wang X (2011) Photoluminescent properties of Prussian Blue (PB) nanoshells and polypyrrole (PPy)/PB core/shell nanoparticles prepared via miniemulsion (periphery) polymerization. Chem Commun 47:6831–6833

    Article  CAS  Google Scholar 

  • Zhang QW, Zhou X, Yang HS (2004) Capacitance properties of composite electrodes prepared by electrochemical polymerization of pyrrole on carbon foam in aqueous solution. J Power Sources 125:141–147

    Article  CAS  Google Scholar 

  • Zhang ZA, Deng MG, Wang BH, Hu YD, Yang BC (2005) Electrochemical characterization of carbon black electrode for supercapacitor. J Funct Mater 36:304–306

    CAS  Google Scholar 

  • Zhang J, Kong LB, Wang B, Luo Y-C, Kang L (2009a) In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synth Met 159:260–266

    Article  CAS  Google Scholar 

  • Zhang LX, Liang LF, Qin N, Mo QJ (2009b) Preparation and characterization of conducting PANI/nano-La2O3 composites. Chon Rare Earth 30:53–56

    Google Scholar 

  • Zhou Y, Qin Z-Y, Li L, Zhang Y, Wei Y-L, Wang L-F, Zhu M-F (2010) Polyaniline/multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials. Electrochim Acta 55:3904–3908

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Gansu Province (Grant No. 1107RJZA213) and the Fundamental Research Funds for the Central Universities (No. lzujbky-2011-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Wang, Y., Wang, X. et al. Polypyrrole-coated samarium oxide nanobelts: fabrication, characterization, and application in supercapacitors. J Nanopart Res 14, 1232 (2012). https://doi.org/10.1007/s11051-012-1232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1232-7

Keywords

Navigation