Nanomaterial inhalation exposure from nanotechnology-based cosmetic powders: a quantitative assessment

  • Yevgen Nazarenko
  • Huajun Zhen
  • Taewon Han
  • Paul J. Lioy
  • Gediminas Mainelis
Research Paper


In this study we quantified exposures to airborne particles ranging from 14 nm to 20 μm due to the use of nanotechnology-based cosmetic powders. Three nanotechnology-based and three regular cosmetic powders were realistically applied to a mannequin’s face while measuring the concentration and size distribution of inhaled aerosol particles. Using these data we calculated that the highest inhaled particle mass was in the coarse aerosol fraction (2.5–10 μm), while particles <100 nm made minimal contribution to the inhaled particle mass. For all powders, 85–93 % of aerosol deposition occurred in the head airways, while <10 % deposited in the alveolar and <5 % in the tracheobronchial regions. Electron microscopy data suggest that nanomaterials were likely distributed as agglomerates across the entire investigated aerosol size range (14 nm–20 μm). Thus, investigation of nanoparticle health effects should consider not only the alveolar region, but also other respiratory system regions where substantial nanomaterial deposition during the actual nanotechnology-based product use would occur.


Nanoaerosol Consumer products Nanoparticles Personal exposure Safety of nanotechnology 



This research was supported in part by the National Institute of Environmental Health Sciences (NIEHS) sponsored University of Medicine and Dentistry of New Jersey (UMDNJ) Center for Environmental Exposures and Disease (Grant # P30ES005022, joint grant between US Environmental Protection Agency and UK Natural Environment Research Council (NERC) (Grants # 83469302 and # NE/H012893), and the New Jersey Agriculture and Experiment Station (NJAES) at Rutgers University. The views expressed in this paper are solely those of the authors and do not necessarily reflect the views of the funding agencies.

Conflict of interest

The authors declare no conflict of interest.


  1. Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The Release of nanosilver from consumer products used in the home. J Environ Qual 39(6):1875–1882CrossRefGoogle Scholar
  2. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB et al (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–357CrossRefGoogle Scholar
  3. Bradford A, Handy RD, Readman JW, Atfield A, Mühling M (2009) Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environ Sci Technol 43(12):4530–4536CrossRefGoogle Scholar
  4. Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360(9341):1233–1242CrossRefGoogle Scholar
  5. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem 112(43):13608–13619CrossRefGoogle Scholar
  6. Chuankrerkkul N, Sangsuk S (2008) Current status of nanotechnology consumer products and nano-safety issues. J Miner Met Mater Soc 18(1):75–79Google Scholar
  7. Dhawan A, Sharma V, Parmar D (2009) Nanomaterials: a challenge for toxicologists. Nanotoxicol 3(1):1–9CrossRefGoogle Scholar
  8. Donaldson K, Li XY, MacNee W (1998) Ultrafine (nanometre) particle mediated lung injury. J Aerosol Sci 29(5–6):553–560CrossRefGoogle Scholar
  9. Duffin R, Tran CL, Clouter A, Brown DM, MacNee W, Stone V et al (2002) The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles. Ann Occup Hyg 46(suppl 1):242–245CrossRefGoogle Scholar
  10. Duffin R, Tran L, Brown D, Stone V, Donaldson K (2007) Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19(10):849–856CrossRefGoogle Scholar
  11. Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35(6):399–409CrossRefGoogle Scholar
  12. Fender JK (2008) The FDA and Nano: Big Problems with Tiny Technology. Chic Kent Law Rev 83:1063–1095Google Scholar
  13. Gleiche M, Hoffschulz H, Lenhert S (2006) Nanotechnology in consumer products. Düsseldorf, GermanyGoogle Scholar
  14. Grassian VH, Adamcakova-Dodd A, Pettibone JM, O’Shaughnessy PT, Thorne PS (2007) Inflammatory response of mice to manufactured titanium dioxide nanoparticles: comparison of size effects through different exposure routes. Nanotoxicology 1(3):211–226CrossRefGoogle Scholar
  15. Hagendorfer H, Lorenz C, Kaegi R, Sinnet B, Gehrig R, Goetz NV et al (2010) Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles. J Nanopart Res 12(7):2481–2494CrossRefGoogle Scholar
  16. Hansen SF, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F, Baun A (2008) Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 17:438–447CrossRefGoogle Scholar
  17. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, 2 illustrated edn. Wiley, New YorkGoogle Scholar
  18. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983CrossRefGoogle Scholar
  19. International Commission on Radiological Protection (1994) Human respiratory tract model for radiological protection. ICRP Publication 66. Ann ICRP 24(1–3)Google Scholar
  20. Keenan CR, Goth-Goldstein R, Lucas D, Sedlak DL (2009) Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ Sci Technol 43(12):4555–4560CrossRefGoogle Scholar
  21. Lee SB (2011) Nanotoxicology: toxicity and biological effects of nanoparticles for new evaluation standards. Nanomedicine 6(5):759–761CrossRefGoogle Scholar
  22. Lioy PJ, Pellizzari E, Prezant D (2006) The world trade center aftermath and its effects on health: understanding and learning through human-exposure science. Environ Sci Technol 40(22):6876–6885CrossRefGoogle Scholar
  23. Lioy PJ, Nazarenko Y, Han TW, Lioy MJ, Mainelis G (2010) Nanotechnology and exposure science: what is needed to fill the research and data gaps for consumer products. Int J Occup Environ Health 16(4):376–385CrossRefGoogle Scholar
  24. Lloyd’s (2007) Nanotechnology recent developments, risks and opportunities. Lloyd’s, LondonGoogle Scholar
  25. Maynard AD (2007) Nanotechnology: the next big thing, or much ado about nothing. Ann Occup Hyg 51(1):1–12CrossRefGoogle Scholar
  26. Maynard AD, Aitken RJ, Butz T, Colvin C, Donaldson K, Oberdörster G et al (2006) Safe handling of nanotechnology. Nature 444:267–269CrossRefGoogle Scholar
  27. Mihranyan A, Ferraz N, Strømme M (2012) Current status and future prospects of nanotechnology in cosmetics. Prog Mater Sci 57(5):875–910CrossRefGoogle Scholar
  28. Mu L, Sprando R (2010) Application of nanotechnology in cosmetics. Pharm Res 27(8):1746–1749CrossRefGoogle Scholar
  29. Nazarenko Y, Han TW, Lioy PJ, Mainelis G (2011) Potential for exposure to engineered nanoparticles from nanotechnology-based consumer spray products. J Expo Sci Environ Epidermol 21:515–528CrossRefGoogle Scholar
  30. Nazarenko Y, Zhen H, Han T, Lioy PJ, Mainelis G (2012) Potential for inhalation exposure to engineered nanoparticles from nanotechnology-based cosmetic powders. Environ Health Perspect 120:885–892CrossRefGoogle Scholar
  31. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  32. Nohynek GJ, Dufour EK, Roberts MS (2008) Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol 21(3):136–149CrossRefGoogle Scholar
  33. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16(6–7):437–445CrossRefGoogle Scholar
  34. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K et al (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2(8):1–35Google Scholar
  35. Oberdörster G, Oberdörster E, Oberdörster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839CrossRefGoogle Scholar
  36. Ostrowski AD, Martin T, Conti J, Hurt I, Harthorn BH (2009) Nanotoxicology: characterizing the scientific literature, 2000–2007. J Nanoparticle Res 11:251–257CrossRefGoogle Scholar
  37. Paull J, Lyons K (2008) Nanotechnology: the next challenge for organics. J Org Syst 3(1):3–22Google Scholar
  38. Quadros ME, Marr LC (2011) Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ Sci Technol 45(24):10713–10719CrossRefGoogle Scholar
  39. Seekkuarachchi IN, Kumazawa H (2008) Aggregation and disruption mechanisms of nanoparticulate aggregates. 1. Kinetics of simultaneous aggregation and disruption. Ind Eng Chem Res 47(7):2391–2400CrossRefGoogle Scholar
  40. Shimada M, Wang W-N, Okuyama K, Myojo T, Oyabu T, Morimoto Y et al (2009) Development and evaluation of an aerosol generation and supplying system for inhalation experiments of manufactured nanoparticles. Environ Sci Technol 43(14):5529–5534CrossRefGoogle Scholar
  41. Tsuji JS, Mowat FS, Donthu S, Reitman M (2009) Application of toxicology studies in assessing the health risks of nanomaterials in consumer products. In: Sahu SC, Casciano DA (eds) Nanotoxicity. Wiley, Chichester, pp 543–580CrossRefGoogle Scholar
  42. U.S.EPA (2011) Exposure factors handbook. EPA/600/R-090/052F. Washington, DCGoogle Scholar
  43. Wardak A, Gorman ME, Swami N, Deshpande S (2008) Identification of risks in the life cycle of nanotechnology-based products. J Ind Ecol 12(3):435–448CrossRefGoogle Scholar
  44. Wittmaack K (2007) In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environ Health Perspect 115(2):187–194CrossRefGoogle Scholar
  45. Woodrow Wilson International Center for Scholars (2011a) Nanotechnology Consumer Products Inventory. Available at. Accessed 7, Jan 2011
  46. Woodrow Wilson International Center for Scholars (2011b) The Project on Emerging Nanotechnologies. Available at. Accessed 26, May 2011
  47. Yang W, Peters JI, Williams RO III (2008) Inhaled nanoparticles—a current review. Int J Pharm 356(1–2):239–247CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Yevgen Nazarenko
    • 1
  • Huajun Zhen
    • 1
  • Taewon Han
    • 1
  • Paul J. Lioy
    • 2
    • 3
  • Gediminas Mainelis
    • 1
    • 3
  1. 1.Department of Environmental SciencesRutgers UniversityNew BrunswickUSA
  2. 2.RWJMS-UMDNJPiscatawayUSA
  3. 3.Environmental and Occupational Health Sciences InstitutePiscatawayUSA

Personalised recommendations