Skip to main content
Log in

Temperature and size dependency of thermal conductivity of aluminum nanocluster

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation has been applied for investigation of coefficient thermal conductivity (CTC) of aluminum nanocluster and its bulk limit via Green–Kubo formalism. The dependence of CTC on size range \( 256 \le N \le 1,372 \) is investigated. Temperature dependence of CTC quantity is considered for aluminum nanocluster and its bulk limit in range \( 300 \le T \le 1,100 \) K. At low temperature, CTC quantity for aluminum nanocluster is greater than its bulk value. Our results regarding the CTC quantity as a function of size and temperature of aluminum nanocluster show that there is a peak in the thermal conductivity. It is worthwhile to notice that trend and the value of our result for CTC quantity in the bulk of aluminum is in agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1925

    Article  CAS  Google Scholar 

  • Alavi S, Thompson DL (2006) Molecular dynamics simulations of the melting of aluminum nanoparticles. J Phys Chem A 110:1518–1523

    Article  CAS  Google Scholar 

  • Allen MP, Tildesley DJ (1997) Computer simulation of liquid. Clarendon, Oxford

    Google Scholar 

  • Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423

    Article  CAS  Google Scholar 

  • Berber S, Kwon YK, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 48:4613–4616

    Article  Google Scholar 

  • Bond GC (1987) Heterogeneous catalysis, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • de Heer WAD (1993) The physics of simple metal clusters: experimental aspects and simple models. Rev Mod Phys 65:611–676 http://www.efunda.com/materials/elements/TC_Table.cfm?Element_ID=Al

  • Desai TG (2011) Thermal transport in nanoclusters. Appl Phys Lett 98:193107–193109

    Article  Google Scholar 

  • Gao JW, Zheng RT, Ohtani H, Zhu DS, Chen G (2009) Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering. Nano Lett 9:4128–4132

    Article  CAS  Google Scholar 

  • Guo X, Wang R, Wang X, Hao J (2004) Effects of preparation method and precipitator on the propylene epoxidation over Ag/TS-1 in the gas phase. Catal Today 211:93–95

    Google Scholar 

  • Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164

    Article  CAS  Google Scholar 

  • Jensen P (1999) Growth of nanostructures by cluster deposition: experiments and simple models. Rev Mod Phys 71:1695–1735

    Article  CAS  Google Scholar 

  • Johnston RL (1998) The development of metallic behaviour in clusters. Philos Trans R Soc Lond A 356:211–230

    Article  CAS  Google Scholar 

  • Johnston RL (2002) Atomic and molecular clusters. Taylor & Francis, London

    Book  Google Scholar 

  • Jortner JZ (1992) Cluster size effects. Physica D 24:247–275

    CAS  Google Scholar 

  • Kim F, Connor S, Song H, Kuykendall T, Yang PD (2004) Platonic gold nanocrystals. Angew Chem Int Ed 43:3673–3677

    Article  CAS  Google Scholar 

  • Kreibig K, Vollmer M (1995) Optical properties of metal clusters. Springer, New York

    Google Scholar 

  • Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlögl R, Pellin MJ, Curtiss LA, Vajda S (2010) Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328:224–228

    Article  CAS  Google Scholar 

  • Lerme J, Bachelier G, Billaud P, Bonnet C, Broyer M, Cottancin E, Marhaba S, Pellarin M (2008) Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique. J Opt Soc Am A 25:493–514

    Article  Google Scholar 

  • Nose S (1990) Constant-temperature molecular dynamics. J Phys Condens Matter 2:115–119

    Article  Google Scholar 

  • Noya EG, Doye JPK, Calvo F (2006) Theoretical study of the melting of aluminum clusters. Phys Rev B 73:125407

    Article  Google Scholar 

  • Petroski JM, Wang ZL, Green TC, El-Sayed MA (1998) Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. J Phys Chem B 102:3316–3320

    Article  CAS  Google Scholar 

  • Qi Y, Cagin T, Johnson WL, Goddard WA (2001) Melting and crystallization in Ni nanoclusters: the mesoscale regime. J Chem Phys 115:385–394

    Article  CAS  Google Scholar 

  • Rodriguez LJL, Montejano CJM, Pal U, Sanchez RJF, Troiani HE, García D, Miki-Yoshida M, Jose YM (2004) Surface reconstruction and decahedral structure of bimetallic nanoparticles. Phys Rev Lett 92:196102–196105

    Article  Google Scholar 

  • Sankaranarayanan SKRS, Bhethanabotla VR, Joseph B (2005) Molecular dynamics simulation study of the melting of Pd–Pt nanoclusters. Phys Rev B 71:15–195415

    Article  Google Scholar 

  • Schebarchov D, Hendy SC (2007) Thermal instability of decahedral structures in platinum nanoparticles. Eur Phys J D 43:11–14

    Article  CAS  Google Scholar 

  • Smith W, Todorov IT (2006) A short description of DL_POLY. Mol Simul 32:935–943

    Article  CAS  Google Scholar 

  • Song H, Kim F, Connor S, Somorjai GA, Yang PD (2005) Pt nanocrystals: shape control and Langmuir–Blodgett monolayer formation. J Phys Chem B 109:188–193

    Article  CAS  Google Scholar 

  • Sun Y, Xia Y (2000) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  Google Scholar 

  • Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735

    Article  CAS  Google Scholar 

  • Tretiakov KV, Scandolo S (2004) Thermal conductivity of solid argon from molecular dynamics simulations. J Chem Phys 120:3765–3769

    Article  CAS  Google Scholar 

  • Vajda S, Lee S, Sell K, Barke I, Kleibert A, Oeynhausen VV, Meiwes BKH, Rodríguez AF, Elam JW, Pellin MM, Lee B, Seifert S, Winans RE (2009) Combined temperature-programmed reaction and it situ X-ray scattering studies of size-selected silver cluster under realistic reaction conditions in the epoxidation of propene. J Chem Phys 131:121104–121108

    Article  Google Scholar 

  • Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf 13:474–480

    Article  CAS  Google Scholar 

  • Warrier P, Teja A (2011) Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res Lett 6:247–252

    Article  Google Scholar 

  • Wen YH, Wu SQ, Zhang JH, Zhu ZZ (2008) The elastic behavior in Ni monocrystal: nonlinear effects. Solid State Commun 146:253–257

    Article  CAS  Google Scholar 

  • Wen Y, Fang H, Zhu Z, Sun S (2009) Molecular dynamics investigation of shape effects on thermal characteristics of platinum nanoparticles. Phys Lett A 373:272–276

    Article  CAS  Google Scholar 

  • Yao Z, Wang JS, Li B, Liu GL (2005) Thermal conduction of carbon nanotubes using molecular dynamics. Phys Rev B71:085417–085424

    Google Scholar 

Download references

Acknowledgments

Financial support from Razi University is gratefully acknowledged. We would like to thank from theoretical and computational research center of Razi University as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Taherkhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taherkhani, F., Rezania, H. Temperature and size dependency of thermal conductivity of aluminum nanocluster. J Nanopart Res 14, 1222 (2012). https://doi.org/10.1007/s11051-012-1222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1222-9

Keywords

Navigation