Inkjet-printed silver nanoparticles on nano-engineered cellulose films for electrically conducting structures and organic transistors: concept and challenges

  • Gary Chinga-Carrasco
  • Daniel Tobjörk
  • Ronald Österbacka
Research Paper

Abstract

This study explores the suitability of microfibrillated cellulose (MFC) films as a substrate for printing electrically conductive structures and multilayer electronic structures such as organic field effect transistors. Various MFC qualities were tested, including mechanically produced MFC, 2,2,6,6-tetramethylpiperidinyl-1-oxyl pre-treated MFC and carboxymethylated-MFC. The films differed significantly with respect to the surface structure. In addition, the carboxymethylated-MFC films were surface modified with hexamethyldisilazane (HMDS) to reduce the water-wettability of the films, and thus, improve the print resolution of the inkjet-printed silver (Ag) nanoparticles. The Ag-particles (diameter < 50 nm) were printed on the HMDS-modified films, which were mainly composed of nanofibrils with diameters <20 nm. The effect of surface roughness and surface chemical characteristics on the ink spreading and print resolution of the Ag-structures was explored. It was demonstrated that organic transistors operating at low voltages can be fabricated on nano-engineered MFC films.

Keywords

Nanoparticles Polymers Porous materials Cellulose Films Barriers Characterization Surface modification Organic transistors 

References

  1. Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85:733–737CrossRefGoogle Scholar
  2. Ahola S, Österberg M, Laine J (2008) Cellulose nanofibrils—adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15:303–314CrossRefGoogle Scholar
  3. Andersson P, Nilsson D, Svensson P-O, Chen M, Malmström A, Remonen T, Kugler T, Berggren M (2002) Active matrix displays based on all-organic electrochemical smart pixels printed on paper. Adv Mater 14:1460–1464CrossRefGoogle Scholar
  4. Aulin C, Netrval J, Wågberg L, Lindström T (2010a) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305CrossRefGoogle Scholar
  5. Aulin C, Gällstedt M, Lindström T (2010b) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRefGoogle Scholar
  6. Bacon WS (1968) Now they’re printing transistors on paper. Pop Sci 193:124–125Google Scholar
  7. Barr MC, Rowehl JA, Lunt RR, Xu J, Wang A, Boyce CM, Gap Im S, Bulovic V, Gleason KK (2011) Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv Mater 23:3500–3505CrossRefGoogle Scholar
  8. Bollström R, Määttänen A, Tobjörk D, Ihalainen P, Kaihovirta N, Österbacka R, Peltonen J, Toivakka M (2009) A multilayer coated fiber-based substrate suitable for printed functionality. Org Electron 10:1020–1023CrossRefGoogle Scholar
  9. Chinga-Carrasco G (2011) Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 6:417CrossRefGoogle Scholar
  10. Chinga-Carrasco G, Syverud K (2010) Computer-assisted quantification of the multiscale structure of films made of nanofibrillated cellulose. J Nanopart Res 12(3):841–851CrossRefGoogle Scholar
  11. Chinga-Carrasco G, Syverud K (2012) On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers. Nanoscale Res Lett 7:192CrossRefGoogle Scholar
  12. Chinga-Carrasco G, Yu Y, Diserud O (2011) Quantitative electron microscopy of cellulose nanofibril structures from Eucalyptus and Pinus radiata kraft pulp fibres. Microsc Microanal 17:563–571CrossRefGoogle Scholar
  13. Chinga-Carrasco G, Kuznetsova N, Garaeva M, Leirset I, Galiullina G, Kostochko A, Syverud K (2012) Bleached and unbleached MFC nanobarriers—properties and hydrophobization with hexamethyldisilazane. J Nanopart Res (Revision being processed)Google Scholar
  14. Eeder F, Klauk H, Halik M, Zschieschang U, Schmid G, Dehm C (2004) Organic electronics on paper. Appl Phys Lett 84:2673CrossRefGoogle Scholar
  15. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SS, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismark A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  16. Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as a strength enhancer in TMP paper. Nord Pulp Pap Res J 23(3):299–304CrossRefGoogle Scholar
  17. Frey-Wyssling A (1954) The fine structure of cellulose microfibrils. Science 119:80–82CrossRefGoogle Scholar
  18. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165CrossRefGoogle Scholar
  19. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585CrossRefGoogle Scholar
  20. Hübler A, Trnovec B, Zillger T, Ali M, Wetzold N, Mingebach M, Wagenpfahl A, Deibel C, Dyakonov V (2011) Printed paper photovoltaic cells. Adv Energy Mater 1(6):1018–1022CrossRefGoogle Scholar
  21. Khan MA, Bhansali US, Alshareef HN (2012) High-performance non-volatile organic ferroelectric memory on banknotes. Adv Mater 24:2165–2170CrossRefGoogle Scholar
  22. Kim D-H, Kim Y-S, Wu J, Liu Z, Song J, Kim H-S, Huang YY, Hwang K-C, Rogers JA (2009) Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv Mater 21:3703–3707CrossRefGoogle Scholar
  23. Lif A, Stenstad P, Syverud K, Nydén M, Holmberg K (2010) Fischer–Tropsch diesel emulsions stabilised by microfibrillated cellulose. J Colloid Int Sci 352(2):585–592CrossRefGoogle Scholar
  24. Lindblad M, Root A (1998) Atomically controlled preparation of silica on alumina. Stud Surf Sci Catal 118:817CrossRefGoogle Scholar
  25. Martins R, Nathan A, Barros R, Pereira L, Barquinha P, Correia N, Ahnood A, Ferreira I, Fortunato E (2011) Complementary metal oxide semi-conductor technology with and on paper. Adv Mater 23:4491–4496CrossRefGoogle Scholar
  26. Meier H (1962) Chemical and morphological aspects of the fine structure of wood. Pure Appl Chem 5:37–52CrossRefGoogle Scholar
  27. Mörseburg K, Chinga-Carrasco G (2009) Assessing the combined benefits of clay and nanofibrillated cellulose in layered TMP-based sheets. Cellulose 16(5):795–806CrossRefGoogle Scholar
  28. Pääkkö M, Ankefors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941CrossRefGoogle Scholar
  29. Rasband WS (1997) ImageJ. U. S. National Institutes of Health, Bethesda, MD, USA, http://rsb.info.nih.gov/ij/. version 1.44p
  30. Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18(1):127–134CrossRefGoogle Scholar
  31. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691CrossRefGoogle Scholar
  32. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10(6):1992–1996CrossRefGoogle Scholar
  33. Siegel AC, Phillips ST, Dickey MD, Lu N, Suo Z, Whitesides GM (2010) Foldable printed circuit boards on paper substrates. Adv Funct Mater 20:28–35CrossRefGoogle Scholar
  34. Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing—process and its applications. Adv Mater 22:673–685CrossRefGoogle Scholar
  35. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  36. Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119(5):2652–2660CrossRefGoogle Scholar
  37. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126CrossRefGoogle Scholar
  38. Soltman D, Subramanian V (2008) Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24:2224–2231CrossRefGoogle Scholar
  39. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85CrossRefGoogle Scholar
  40. Syverud K, Chinga-Carrasco G, Toledo J, Toledo P (2010) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84(3):1033–1038CrossRefGoogle Scholar
  41. Syverud K, Kirsebom H, Hajizadeh S, Chinga-Carrasco G (2011) Cross-linking cellulose nanofibrils for potential elastic cryo-structured gels. Nanoscale Res Lett 6:626CrossRefGoogle Scholar
  42. Tanaka R, Saito T, Isogai A (2012) Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO(2) systems in water at pH 4.8 or 6.8. Int J Biol Macromol 51(3):228–234CrossRefGoogle Scholar
  43. Tasaltin N, Sanli D, Jonáš A, Kiraz A, Erkey C (2011) Preparation and characterization of superhydrophobic surfaces based on hexamethyldisilazane-modified nanoporous alumina. Nanoscale Res Lett 6:487CrossRefGoogle Scholar
  44. Tekin E, Smith PJ, Schubert US (2008) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4:703–713CrossRefGoogle Scholar
  45. Tobjörk D, Österbacka R (2011) Paper electronics. Adv Mater 23:1935–1961CrossRefGoogle Scholar
  46. Trnovec B, Stanel M, Hahn U, Hübler AC, Kempa H, Sangl R, Forster M (2009) Coated paper for printed electronics. Prof Papermak 6:48–51Google Scholar
  47. van Osch THJ, Perelaer J, De Laat AWM, Schubert US (2008) Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv Mater 20:343–345CrossRefGoogle Scholar
  48. Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795CrossRefGoogle Scholar
  49. Xhanari K, Syverud K, Stenius P (2011) Emulsions stabilized by microfibrillated cellulose: the effect of hydrophobization, concentration and o/w ratio. J Dispers Sci Technol 32(3):447–452CrossRefGoogle Scholar
  50. Zschieschang U, Yamamoto T, Takimiya K, Kuwabara H, Ikeda M, Sekitani T, Someya T, Klauk H (2011) Organic electronics on banknotes. Adv Mater 23:654–658CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Gary Chinga-Carrasco
    • 1
  • Daniel Tobjörk
    • 2
  • Ronald Österbacka
    • 2
  1. 1.Paper and Fibre Research Institute (PFI)TrondheimNorway
  2. 2.Physics, Department of Natural Sciences and Center for Functional MaterialsÅbo Akademi UniversityTurkuFinland

Personalised recommendations