A novel method for synthesis of 56Co-radiolabelled silica nanoparticles

  • I. Cydzik
  • A. Bilewicz
  • K. Abbas
  • F. Simonelli
  • A. Bulgheroni
  • U. Holzwarth
  • N. Gibson
Research Paper

Abstract

A method for synthesis of radiolabelled amorphous silica nanoparticles is presented. The method is based on the well-known Stöber process with the exception that 56Co radiotracer is introduced into one of the precursor materials prior to the initiation of the nanoparticle synthesis. The 56Co was prepared by proton irradiation of an iron foil, followed by dissolution in hydrochloric acid and 56Co/Fe radiochemical separation. In order to determine the residual Fe in the 56Co radiotracer solution, ICP-MS measurements were performed. Nanoparticles in the size range 20–100 nm were synthesised and characterised by gamma spectrometry, ICP-MS, XRD, DLS, and Zeta potential measurement. It was shown that the size and Zeta potential of the nanoparticles was roughly the same following synthesis with or without added 56Co, and in both cases, the structure was that of amorphous silica. It was found that 99.5 % of the 56Co was bound into the nanoparticles during synthesis, and centrifugation experiments confirmed that the radiolabels were stably incorporated into the silica matrix.

Keywords

Silica nanoparticles Radiolabelling of nanoparticles Radiochemical synthesis Radiotracer 

References

  1. Barthel H, Rösch L, Weis J (2008) Fumed silica: production, properties, and applications. In: Auner N, Weis J (eds) Organosilicon chemistry set: from molecules to materials. Wiley, Weinheim. doi:10.1002/9783527620777.ch91a
  2. Couteau O, Roebben G (2008) Processing and value assignment for IRMM-304—water-based suspension of silica nanoparticles. European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, European Communities, 2008. http://www.irmm.jrc.be/html/reference_materials_catalogue/catalogue/attachements/IRMM-304_report.pdf. Accessed 11 Nov 2008
  3. Couteau O, Charoud-Got J, Rauscher H, Franchini F, Rossi F, Kestens V, Franks K, Roebben G (2010) A colloidal silica reference material for nanoparticle sizing by means of dynamic light scattering and centrifugal liquid sedimentation. Part Part Syst Charact 27:112–124CrossRefGoogle Scholar
  4. De Laeter JR, Böhlke JK,. De Bièvre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements. Review 2000, IUPAC technical report. Pure Appl Chem 75:683–800. http://www.iupac.org/publications/pac/75/6/0683/pdf/
  5. Gibson N, Holzwarth U, Abbas K, Simonelli F, Kozempel J, Cydzik I, Cotogno G, Bulgheroni A, Gilliland D, Franchini F, Marmorato P, Stamm H, Kreyling W, Wenk A, Semmler-Behnke M, Buono S, Maciocco L, Burgio N (2011) Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators. Arch Toxicol 85:751–773CrossRefGoogle Scholar
  6. Grobe A, Renn O, Jaeger A (2008) Risk governance of nanotechnology applications in food and cosmetics. International Risk Governance Council, Geneva, September 2008; ISBN 978-2-9700631-4-8Google Scholar
  7. Handy RD, von der Kammer F, Lead JR, Hassell M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314CrossRefGoogle Scholar
  8. Hazan I, Korkisch J (1965) Anion-exchange separation of iron, cobalt and nickel. Anal Chim Acta 32:46–51CrossRefGoogle Scholar
  9. Hoet PHM, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 2:12. doi:10.1186/1477-3155-2-12 CrossRefGoogle Scholar
  10. Ibrahim IAM, Zikry AAF, Sharaf MA (2010) Preparation of spherical silica nanoparticles: Stöber silica. J Am Sci 6(11):985–989Google Scholar
  11. Jafarzadeh M, Rahman IA, Sipaut CS (2009) Synthesis of silica nanoparticles by modified sol–gel process: the effect of mixing modes of the reactants and drying techniques. J Sol Gel Sci Technol 50:328–336CrossRefGoogle Scholar
  12. Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414CrossRefGoogle Scholar
  13. Kammler HK, Mädler L, Pratsinis SE (2001) Flame synthesis of nanoparticles. Chem Eng Technol 24:583–596CrossRefGoogle Scholar
  14. Lázaro A, Brouwers HJH (2010) Nano-silica production by a sustainable process: application in building materials. In: 8th Fib PhD symposium in Kgs. Lyngby, Denmark, 20–23 June 2010Google Scholar
  15. Leadbeater TW, Parker DJ, Gargiuli J (2012) Positron imaging systems for studying particulate, granular and multiphase flows. Particuology 10:146–153CrossRefGoogle Scholar
  16. Llop J, Campana CP, Gomez-Vallejo V, Sebastian ES, Martin A, Reese T, Ziolo FR, Moya SE (2011) Synthesis of positron emitter labeled metal oxide nanoparticles for biodistribution studies by direct activation with high energy protons. ImagineNano. Bilbao, Spain. April, 2011. http://www.imaginenano.com/2011/GENERAL/AbstractBooklet/imaginenano_abstract_NanoBio&Med.pdf. Accessed 1 June 2011
  17. Mader H, Li X, Saleh S, Link M, Kele P, Wolfbeis OS (2008) Fluorescent silica nanoparticles. Ann N Y Acad Sci 1130:218–223CrossRefGoogle Scholar
  18. Napierska D, Thomassen LCJ, Lison D, Martens JA, Hoet PH (2010) The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39CrossRefGoogle Scholar
  19. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  20. OECD (2008) List of manufactured nanomaterials and list of endpoints for phase one of the OECD testing programme environment. Health and Safety publications, series on the safety of manufactured nanomaterials no. 6: working party on manufactured nanomaterials: ENV/JM/MONO(2008)13/REV. Organisation for Economic Co-operation and Development, ParisGoogle Scholar
  21. Sarparanta M, Mäkilä E, Heikkilä T, Salonen J, Kukk E, Lehto V-P, Santos HA, Hirvonen J, Airaksinen AJ (2011) 18F-Labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol Pharm 8:1799–1806CrossRefGoogle Scholar
  22. Schaefer H-E (2010) Nanoscience. Springer, HeidelbergCrossRefGoogle Scholar
  23. Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  24. Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126:462–463CrossRefGoogle Scholar
  25. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534CrossRefGoogle Scholar
  26. Vollath D (2008) Nanomaterials: an introduction to synthesis. properties and application. Wiley, WeinheimGoogle Scholar
  27. Wang L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE, Wu Y, Tan W (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78:646–654CrossRefGoogle Scholar
  28. Weiss C, Diabate S (2011) A special issue on nanotoxicology. Arch Toxicol 85:705–706CrossRefGoogle Scholar
  29. Zhang X, Fan Y (2012) Preparation of spherical silica particles in reverse micro emulsions using silicon tetrachloride as precursor. J Non Cryst Solids 358(2012):337–341CrossRefGoogle Scholar
  30. Ziegler JF, Ziegler MD, Biersack JP (2008) The stopping and range of ions in matter, SRIM-2008.03. http://www.srim.org/\#SRIM. Accessed 25 Jan 2008

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • I. Cydzik
    • 1
    • 2
    • 3
  • A. Bilewicz
    • 2
  • K. Abbas
    • 4
  • F. Simonelli
    • 1
  • A. Bulgheroni
    • 1
  • U. Holzwarth
    • 1
  • N. Gibson
    • 1
  1. 1.European Commission, Joint Research CentreInstitute for Health and Consumer ProtectionIspraItaly
  2. 2.Institute of Nuclear Chemistry and TechnologyWarsawPoland
  3. 3.Heavy Ion LaboratoryUniversity of WarsawWarsawPoland
  4. 4.European Commission, Joint Research CentreInstitute for Transuranium Elements (Ispra Site)IspraItaly

Personalised recommendations