Skip to main content

UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions

Abstract

Due to the increasing use of silver nanoparticles (AgNPs) in consumer products, it is essential to understand how variables, such as light exposure, may change the physical and chemical characteristics of AgNP suspensions. To this end, the effect of 300 nm ultraviolet (UV) light on (20, 40, 60 and 80) nm citrate-capped AgNP suspensions has been investigated. As a consequence of irradiation, the initial yellow hue of the AgNP suspensions is transformed towards a near colorless solution due to the loss of the surface plasmon resonance (SPR) absorbance. The decrease in SPR absorbance followed a first-order decay process for all particle sizes with a rate constant that increased linearly with the AgNP specific surface area and non-linearly with light intensity. The rate of loss of the SPR absorbance decreased with increasing citrate concentration, suggesting a surface-mediated transformation. Absorbance, atomic force microscopy, and dynamic light scattering results all indicated that AgNP photolysis was accompanied by a diameter decrease and occasional aggregation. Furthermore, in situ transmission electron microscopy imaging using a specialized liquid cell also showed a decrease in the particle size and the formation of a core–shell structure in UV-exposed AgNPs. X-ray photoelectron spectroscopy analysis suggested that this shell consisted of oxidized silver. The SPR in UV-exposed AgNP suspensions could be regenerated by addition of a strong reducing agent (NaBH4), supporting the idea that oxidized silver is present after photolysis. Evidence for UV-enhanced dissolution and the production of silver ions was obtained with the Donnan membrane technique. This study reveals that the physico-chemical properties of aqueous AgNP suspensions will change significantly upon exposure to UV light, with implications for environmental health and safety risk assessments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ahamed M, Karns M et al (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233(3):404–410

    Article  CAS  Google Scholar 

  2. Akaighe N, MacCuspie RI et al (2011) Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ Sci Technol 45(9):3895–3901

    Article  CAS  Google Scholar 

  3. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  Google Scholar 

  4. Björn LO (2008) Principles and nomenclature for the quantification of light. In: Björn LO (ed) Photobiology. Springer, New York, pp 41–49

    Chapter  Google Scholar 

  5. Boyd RD, Cuenat A (2011) New analysis procedure for fast and reliable size measurement of nanoparticles from atomic force microscopy images. J Nanopart Res 13(1):105–113

    Article  Google Scholar 

  6. Braslavsky SE (2007) Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure Appl Chem 79(3):293–465

    Article  CAS  Google Scholar 

  7. Briggs D, Seah MP (1990) Practical surface analysis. Wiley, Chichester

    Google Scholar 

  8. Cheng Y, Yin L et al (2011) Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J Phys Chem C 115(11):4425–4432

    Article  CAS  Google Scholar 

  9. Chinnapongse SL, MacCuspie RI et al (2011) Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci Total Environ 409(12):2443–2450

    Article  CAS  Google Scholar 

  10. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    Article  CAS  Google Scholar 

  11. Costanza J, El Badawy AM et al (2011) Comment on “120 years of nanosilver history: implications for policy makers”. Environ Sci Technol 45(17):7591–7592

    Article  CAS  Google Scholar 

  12. Dai Y, He M et al (2011) Femtosecond laser nanostructuring of silver film. Appl Phys A 106(3):567–574

    Article  Google Scholar 

  13. Demir E, Vales G et al (2010) Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology. doi:10.3109/17435390.2010.529176

    Google Scholar 

  14. Duan JS, Park K et al (2009) Optical properties of rodlike metallic nanostructures: insight from theory and experiment. J Phys Chem C 113(35):15524–15532

    Article  CAS  Google Scholar 

  15. Geranio L, Heuberger M et al (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43(21):8113–8118

    Article  CAS  Google Scholar 

  16. Geronimo CLA, MacCuspie RI (2011) Antibody-mediated self-limiting self-assembly for quantitative analysis of nanoparticle surfaces by atomic force microscopy. Microsc Microanal 17(2):206–214

    Article  CAS  Google Scholar 

  17. Grobelny J, DelRio FW et al (2009) NIST-NCL Joint Assay Protocol PCC-6: size measurements of nanoparticles using atomic force microscopy. NIST, Gaithersburg, MD

    Google Scholar 

  18. Hackley VA, Clogston JD (2007) NIST-NCL Joint Assay Protocol PCC-1: measuring the size of nanoparticles in aqueous media using batch-mode dynamic light scattering. NIST, Gaithersburg, MD

    Google Scholar 

  19. Hatchard CG, Parker CA (1956) A new sensitive chemical actinometer. 2. Potassium ferrioxalate as a standard chemical actinometer. Proc R Soc Lond Ser A-Math Phys Sci 235(1203):518–536

    Article  CAS  Google Scholar 

  20. Jiang XC, Chen CY et al (2010) Role of citric acid in the formation of silver nanoplates through a synergistic reduction approach. Langmuir 26(6):4400–4408

    Article  CAS  Google Scholar 

  21. Kalis EJJ, Weng LP et al (2006) Measuring free metal ion concentrations in situ in natural waters using the Donnan Membrane Technique. Environ Sci Technol 40(3):955–961

    Article  CAS  Google Scholar 

  22. Kalis EJJ, Weng LP et al (2007) Measuring free metal ion concentrations in multicomponent solutions using the Donnan membrane technique. Anal Chem 79(4):1555–1563

    Article  CAS  Google Scholar 

  23. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    Article  CAS  Google Scholar 

  24. Kamat PV, Flumiani M et al (1998) Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation. J Phys Chem B 102:3123–3128

    Article  CAS  Google Scholar 

  25. Kennedy AJ, Hull MS et al (2010) Fractionating nanosilver: importance for determining toxicity to aquatic test organisms. Environ Sci Technol 44(24):9571–9577

    Article  CAS  Google Scholar 

  26. Kim B, Park C-S et al (2010a) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44(19):7509–7514

    Article  CAS  Google Scholar 

  27. Kim J, Kim S et al (2010b) Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Nanotoxicology. doi:10.3109/17435390.2010.508137

    Google Scholar 

  28. Klaine SJ, Alvarez PJJ et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  CAS  Google Scholar 

  29. Klein KL, Anderson IM et al (2011) Transmission electron microscopy with a liquid flow cell. J Microsc 242(2):117–123

    Article  CAS  Google Scholar 

  30. Klosky S, Woo L (1926) Solubility of silver oxide in mixture of water and alcohol. J Phys Chem 30(9):1179–1180

    Article  CAS  Google Scholar 

  31. Levard Cm, Reinsch BC et al (2011) Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45(12):5260–5266

    Article  CAS  Google Scholar 

  32. Levard C, Hotze EM et al (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914

    Article  CAS  Google Scholar 

  33. Lide DR (1999) Handbook of chemistry and physics. Chemical Rubber Pub. Co., Cleveland

    Google Scholar 

  34. Linnert T, Mulvaney P et al (1991) Photochemistry of colloidal silver particles—the effects of N2O and adsorbed CN. Ber Bunsen Phys Chem 95(7):838–841

    Article  CAS  Google Scholar 

  35. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175

    Article  CAS  Google Scholar 

  36. Liu J, Sonshine DA et al (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11):6903–6913

    Article  CAS  Google Scholar 

  37. MacCuspie RI (2011) Colloidal stability of silver nanoparticles in biologically relevant conditions. J Nanopart Res 13(7):2893–2908

    Article  CAS  Google Scholar 

  38. MacCuspie RI, Allen AJ et al (2011a) Dispersion stabilization of silver nanoparticles in synthetic lung fluid studied under in situ conditions. Nanotoxicology 5(2):140–156

    Article  CAS  Google Scholar 

  39. MacCuspie RI, Rogers K et al (2011b) Challenges for physical characterization of silver nanoparticles under pristine and environmentally relevant conditions. J Environ Monit 13(5):1212–1226

    Article  CAS  Google Scholar 

  40. Maynard A (2010) Project on emerging nanotechnologies. Woodrow Wilson International Center for Scholars. http://www.nanotechproject.org/inventories/consumer/analysis_draft/

  41. Molder JF, Stickle WF et al (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie

    Google Scholar 

  42. Nic M, Jirat J et al (2006) IUPAC. Compendium of chemical terminology (the “Gold Book”), 2nd ed. Blackwell Scientific Publications, Oxford. http://goldbook.iupac.org. ISBN 0-9678550-9-8. doi:10.1351/goldbook

  43. Nowack B (2010) Nanosilver revisited downstream. Science 330(6007):1054–1055

    Article  CAS  Google Scholar 

  44. Nowack B, Krug HF et al (2011a) Reply to comments on “120 years of nanosilver history: implications for policy makers”. Environ Sci Technol 45(17):7593–7595

    Article  CAS  Google Scholar 

  45. Nowack B, Krug HF et al (2011b) 120 Years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183

    Article  CAS  Google Scholar 

  46. Pal S, Tak YK et al (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  Google Scholar 

  47. Piccapietra F, Sigg L et al (2012) Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater. Environ Sci Technol 46(2):818–825

    Article  CAS  Google Scholar 

  48. Popov AK, Brummer J et al (2006) Synthesis of isolated silver nanoparticles and their aggregates manipulated by light. Laser Phys Lett 3(11):546–552

    Article  CAS  Google Scholar 

  49. Pradhan N, Pal A et al (2001) Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir 17(5):1800–1802

    Article  CAS  Google Scholar 

  50. Rai M, Yadav A et al (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  Google Scholar 

  51. Ring EA, de Jonge N (2010) Microfluidic system for transmission electron microscopy. Microsc Microanal 16(05):622–629

    Article  CAS  Google Scholar 

  52. Schon G (1973) ESCA studies of Ag, Ag2O and AgO. Acta Chem Scand 27(7):2623–2633

    Article  CAS  Google Scholar 

  53. Stebounova LV, Guio E et al (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res 13(1):233–244

    Article  CAS  Google Scholar 

  54. Temminghoff EJM, Plette ACC et al (2000) Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Technique. Anal Chim Acta 417(2):149–157

    Article  CAS  Google Scholar 

  55. Thomas S, Nair SK et al (2008) Size-dependent surface plasmon resonance in silver silica nanocomposites. Nanotechnology 19:075710. doi:10.1088/0957-4484/19/7/075710

  56. Tolaymat TM, El Badawy AM et al (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006

    Article  CAS  Google Scholar 

  57. Tsai DH, Cho TJ et al (2011) Hydrodynamic fractionation of finite size gold nanoparticle clusters. J Am Chem Soc 133(23):8884–8887

    Article  CAS  Google Scholar 

  58. Wagner CD (1975) Chemical shifts of Auger lines, and the Auger parameter. Faraday Discuss Chem Soc 60:291

    Article  Google Scholar 

  59. Wagner CD, Gale LH et al (1979) 2-Dimensional chemical-state plots—standardized data set for use in identifying chemical-states by X-ray photoelectron-spectroscopy. Anal Chem 51(4):466–482

    Article  CAS  Google Scholar 

  60. Weng LP, Van Riemsdijk WH et al (2005) Kinetic aspects of donnan membrane technique for measuring free trace cation concentration. Anal Chem 77(9):2852–2861

    Article  CAS  Google Scholar 

  61. Weng LP, Van Riemsdijk WH et al (2010) Effects of lability of metal complex on free ion measurement using DMT. Environ Sci Technol 44(7):2529–2534

    Article  CAS  Google Scholar 

  62. Wiesner MR, Lowry GV et al (2009) Decreasing uncertainties in assessing environmental exposure, risk and ecological implications of nanomaterials. Environ Sci Technol 43:6458–6462

    Article  CAS  Google Scholar 

  63. Xue C, Métraux GS et al (2008) Mechanistic study of photomediated triangular silver nanoprism growth. J Am Chem Soc 130(26):8337–8344

    Article  CAS  Google Scholar 

  64. Zook JM, Long SE et al (2011a) Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV–visible absorbance. Anal Bioanal Chem 401(6):1993–2002

    Article  CAS  Google Scholar 

  65. Zook JM, MacCuspie RI et al (2011b) Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology 5(4):517–530

    Article  CAS  Google Scholar 

  66. Zook JM, Rastogi V et al (2011c) Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation. ACS Nano 5(10):8070–8079

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Research Council for funding and Ben Yezer for useful comments and suggestions. The cleaning, membrane conditioning, and sampling protocols were kindly supplied by Dr. Erwin Temminghoff (Wageningen University). DHF acknowledges support from an NIEHS SEED grant administered by JHU School of Public Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Justin M. Gorham.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (doc 698 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gorham, J.M., MacCuspie, R.I., Klein, K.L. et al. UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions. J Nanopart Res 14, 1139 (2012). https://doi.org/10.1007/s11051-012-1139-3

Download citation

Keywords

  • Silver nanoparticles
  • AgNPs
  • Photolysis
  • NanoEHS
  • Nanoparticle transformations
  • Liquid TEM