Journal of Nanoparticle Research

, 14:1127 | Cite as

Aggregation of gold nanoparticles followed by methotrexate release enables Raman imaging of drug delivery into cancer cells

  • C. V. Durgadas
  • C. P. Sharma
  • W. Paul
  • M. R. Rekha
  • K. SreenivasanEmail author
Research Paper


This study refers an aqueous synthesis of methotrexate (MTX)-conjugated gold nanoparticles (GNPs), their interaction with HepG2 cells, and the use of Raman imaging to observe cellular internalization and drug delivery. GNPs of average size 3.5–5 nm were stabilized using the amine terminated bifunctional biocompatible copolymer and amended by conjugating MTX, an anticancer drug. The nanoparticles were released MTX at a faster rate in acidic pH and subsequently found to form aggregates. The Raman signals of cellular components were found to be enhanced by the aggregated particles enabling the mapping to visualize site-specific drug delivery. The methodology seems to have potential in optimizing the characteristics of nanodrug carriers for emptying the cargo precisely at specified sites.

Graphical Abstract

Drug release induced particle aggregation enhances Raman signals to aid in imaging.


Gold nanoparticle Raman imaging Methotrexate Targeted drug delivery HepG2 cells 



This work was supported by the Department of Science and Technology, Govt. of India through the project “Facility for nano/microparticle based biomaterials - advanced drug delivery systems” #8013, under the Drugs and Pharmaceuticals Research Programme. The authors also acknowledge the support extended by Dr. Annie John (TEM division). C.V. Durgadas wish to thank the Lady Tata foundation for the senior research scholarship in science.

Supplementary material

11051_2012_1127_MOESM1_ESM.doc (954 kb)
Supplementary material 1 (DOC 953 kb)


  1. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6):701–708. doi: 10.1002/smll.200801546 CrossRefGoogle Scholar
  2. Bruce NC (1997) The mechanism of action of methotrexate. Rheum Dis Clin N Am 23(4):739–755. doi: 10.1016/s0889-857x(05)70358-6 CrossRefGoogle Scholar
  3. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 7:801–802CrossRefGoogle Scholar
  4. Chen Y-H, Tsai C-Y, Huang P-Y, Chang M-Y, Cheng P-C, Chou C-H, Chen D-H, Wang C-R, Shiau A-L, Wu C-L (2007) Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 4(5):713–722. doi: 10.1021/mp060132k CrossRefGoogle Scholar
  5. Chithrani DB, Dunne M, Stewart J, Allen C, Jaffray DA (2010) Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier. Nanomed Nanotechnol Biol Med 6(1):161–169. doi: 10.1016/j.nano.2009.04.009 CrossRefGoogle Scholar
  6. Dasary SSR, Singh AK, Senapati D, Yu H, Ray PC (2009) Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J Am Chem Soc 131(38):13806–13812. doi: 10.1021/ja905134d CrossRefGoogle Scholar
  7. Day ES, Morton JG, West JL (2009) Nanoparticles for thermal cancer therapy. J Biomech Eng 131(7):074001CrossRefGoogle Scholar
  8. Duncan B, Kim C, Rotello VM (2010) Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J Control Release 148(1):122–127. doi: 10.1016/j.jconrel.2010.06.004 CrossRefGoogle Scholar
  9. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834. doi: 10.1021/nl050074e CrossRefGoogle Scholar
  10. Fang C, Bhattarai N, Sun C, Zhang M (2009) Functionalized nanoparticles with long-term stability in biological media. Small 5(14):1637–1641. doi: 10.1002/smll.200801647 CrossRefGoogle Scholar
  11. Galanzha EI, Shashkov EV, Kelly T, Kim J-W, Yang L, Zharov VP (2009) In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nano 4(12):855–860. Google Scholar
  12. Gomez S, Philippot K, Colliere V, Chaudret B, Senocq F, Lecante P (2000) Gold nanoparticles from self-assembled gold(I) amine precursors. Chem Commun 19:1945–1946CrossRefGoogle Scholar
  13. He H, Xie C, Ren J (2008) Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Anal Chem 80(15):5951–5957. doi: 10.1021/ac8005796 CrossRefGoogle Scholar
  14. Huang C-C, Yang Z, Lee K-H, Chang H-T (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem 119(36):6948–6952. doi: 10.1002/ange.200700803 CrossRefGoogle Scholar
  15. Huang C-C, Chen C-T, Shiang Y-C, Lin Z-H, Chang H-T (2009) Synthesis of fluorescent carbohydrate-protected au nanodots for detection of concanavalin A and Escherichia coli. Anal Chem 81(3):875–882. doi: 10.1021/ac8010654 CrossRefGoogle Scholar
  16. Hussain I, Graham S, Wang Z, Tan B, Sherrington DC, Rannard SP, Cooper AI, Brust M (2005) Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1–4 nm range using polymeric stabilizers. J Am Chem Soc 127(47):16398–16399. doi: 10.1021/ja055321v CrossRefGoogle Scholar
  17. Jain NK, Gupta U (2008) Application of dendrimer-drug complexation in the enhancement of drug solubility and bioavailability. Expert Opin Drug Metab Toxicol 4(8):1035–1052. doi: 10.1517/17425255.4.8.1035 CrossRefGoogle Scholar
  18. Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 77(8):2381–2385. doi: 10.1021/ac050109v CrossRefGoogle Scholar
  19. Kohler N, Sun C, Wang J, Zhang M (2005) Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21(19):8858–8864. doi: 10.1021/la0503451 CrossRefGoogle Scholar
  20. Lee S, Kim S, Choo J, Shin SY, Lee YH, Choi HY, Ha S, Kang K, Oh CH (2007) Biological imaging of HEK293 cells expressing PLCγ1 using surface-enhanced Raman microscopy. Anal Chem 79(3):916–922. doi: 10.1021/ac061246a CrossRefGoogle Scholar
  21. Leff DV, Brandt L, Heath JR (1996) Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 12(20):4723–4730. doi: 10.1021/la960445u CrossRefGoogle Scholar
  22. Liu Y, Shipton MK, Ryan J, Kaufman ED, Franzen S, Feldheim DL (2007) Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide-poly(ethylene glycol) monolayers. Anal Chem 79(6):2221–2229. doi: 10.1021/ac061578f CrossRefGoogle Scholar
  23. Louit G, Asahi T, Tanaka G, Uwada T, Masuhara H (2009) Spectral and 3-dimensional tracking of single gold nanoparticles in living cells studied by Rayleigh light scattering microscopy†. J Phys Chem C 113(27):11766–11772. doi: 10.1021/jp9018124 CrossRefGoogle Scholar
  24. Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244. doi: 10.1002/anie.200602866 CrossRefGoogle Scholar
  25. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80(4):1067–1072. doi: 10.1021/ac702037y CrossRefGoogle Scholar
  26. Murday JS, Siegel RW, Stein J, Wright JF (2009) Translational nanomedicine: status assessment and opportunities. Nanomedicine 5(3):251–273. doi: 10.1016/j.nano.2009.06.001 CrossRefGoogle Scholar
  27. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41(12):1721–1730. doi: 10.1021/ar800035u CrossRefGoogle Scholar
  28. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine: challenge and perspectives. Angew Chem Int Ed 48(5):872–897. doi: 10.1002/anie.200802585 CrossRefGoogle Scholar
  29. Saar BG, Contreras-Rojas LR, Xie XS, Guy RH (2011) Imaging drug delivery to skin with stimulated Raman scattering microscopy. Mol Pharm 8(3):969–975. doi: 10.1021/mp200122w CrossRefGoogle Scholar
  30. Shah NB, Dong J, Bischof JC (2010) Cellular uptake and nanoscale localization of gold nanoparticles in cancer using label-free confocal Raman microscopy. Mol Pharm 8(1):176–184. doi: 10.1021/mp1002587 CrossRefGoogle Scholar
  31. Shimmin RG, Schoch AB, Braun PV (2004) Polymer size and concentration effects on the size of gold nanoparticles capped by polymeric thiols. Langmuir 20(13):5613–5620. doi: 10.1021/la036365p CrossRefGoogle Scholar
  32. Templeton AC, Pietron JJ, Murray RW, Mulvaney P (1999) Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters. J Phys Chem B 104(3):564–570. doi: 10.1021/jp991889c CrossRefGoogle Scholar
  33. Xie J, Xu C, Kohler N, Hou Y, Sun S (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163–3166. doi: 10.1002/adma.200701975 CrossRefGoogle Scholar
  34. Zamboni WC (2008) Concept and clinical evaluation of carrier-mediated anticancer agents. Oncologist 13(3):248–260. doi: 10.1634/theoncologist.2007-0180 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • C. V. Durgadas
    • 1
  • C. P. Sharma
    • 1
  • W. Paul
    • 1
  • M. R. Rekha
    • 1
  • K. Sreenivasan
    • 2
    Email author
  1. 1.Biosurface Technology DivisionSree Chitra Tirunal Institute for Medical Sciences and TechnologyTrivandrumIndia
  2. 2.Laboratory for Polymer Analysis, Biomedical Technology WingSree Chitra Tirunal Institute for Medical Sciences and TechnologyTrivandrumIndia

Personalised recommendations