Skip to main content
Log in

Matrix effect on the photoluminescence of Si nanocrystal

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

To examine the matrix effect on the light emission of Si nanocrystal (Si-NC), we investigated the photoluminescence (PL) of Si-NC from multilayered samples of Si/SiO2 and SiO/SiO2 and single-layered pure Si thin films, which had all been annealed in nitrogen at 1,100 °C for 1 h so as to form Si-NCs. The size range of Si-NC is 1–10 nm. It was found that the density of Si-NC in the pure Si> that in Si/SiO2> that in SiO/SiO2, but the PL intensity of Si-NC from pure Si< that from Si/SiO2< that from SiO/SiO2. On the other hand, the PL intensity of Si-NC from Si/SiO2 sample is higher than that from Si/Si3N4 one. All these results are related to the difference in matrix surrounding Si-NCs, which causes differences in carrier confinement or/and interface state. The results suggest that for light emission of Si-NC, the matrix effect is determinative, and can be more important than the density of Si-NC itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048

    Article  CAS  Google Scholar 

  • Canham LT (2000) Gaining light from silicon. Nature 408:411–412

    Article  CAS  Google Scholar 

  • De Boer WDAM, Timmerman D, Dohnalová K, Yassievich IN, Zhang H, Buma WJ, Gregokiewicz T (2010) Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nat Nanotechnol 5:878–884

    Article  Google Scholar 

  • Erogbogbo F, Yong KT, Roy I, Xu JX, Prasad PN, Swihart MT (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2:873–878

    Article  CAS  Google Scholar 

  • Fauchet PM, Ruan J, Chen H, Pavesi L, Negro LD, Cazzaneli M, Elliman RG, Smith N, Samoc M, Luther-Davies B (2005) Optical gain in different silicon nanocrystal systems. Opt Mater 27:745–749

    Article  CAS  Google Scholar 

  • Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev OI, van Tendeloo G, Moshchalkov VV (2008) Classification and control of the origin of photoluminescence from Si nanocrystals. Nat Nanotechnol 3:174–178

    Article  CAS  Google Scholar 

  • Gösele U (2008) Shedding new light on silicon. Nat Nanotechnol 3:134–135

    Article  Google Scholar 

  • He Y, Kang ZH, Li QS, Tsang CHA, Fan CH, Lee ST (2009) Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew Chem Int Ed 48:128–132

    Article  CAS  Google Scholar 

  • Heitmann J, Müller F, Zacharias M, Gösele U (2005) Silicon nanocrystals: size matters. Adv Mater 17:795–803

    Article  CAS  Google Scholar 

  • Khriachtchev L, Novikov S, Lahtinen J (2002) Thermal annealing of SiO/SiO2 materials: modification of structural and photoluminescence emission properties. J Appl Phys 92:5856–5862

    Article  CAS  Google Scholar 

  • Li D, Chen YB, Ren Y, Zhu J, Zhao YY, Lu M (2012) A multilayered approach of Si/SiO to promote carrier transport in electroluminescence of Si nanocrystals. Nanoscale Res Lett 7:200

    Article  Google Scholar 

  • Lin GR, Lin CJ, Lin CT (2007) Low-plasma and high-temperature PECVD grown silicon-rich SiOx film with enhanced carrier tunneling and light emission. Nanotechnology 18:395202

    Article  Google Scholar 

  • Lockwood DJ (2009) Light emission in silicon nanostructures. J Mater Sci: Mater Electron 20:235–244

    Article  CAS  Google Scholar 

  • Lu ZH, Lockwood DJ, Baribeau JM (1995) Quantum confinement and light emission in SiO2/Si superlattice. Nature 378:258–260

    Article  CAS  Google Scholar 

  • Luterová K, Dohnalová K, Švrček V, Pelant I, Likforman JP, Cregut O, Gilliot P, Hönerlage B (2004) Optical gain in porous silicon grains embedded in sol–gel derived SiO2 matrix under femtosecond excitation. Appl Phys Lett 84:3280–3282

    Article  Google Scholar 

  • Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336

    Article  CAS  Google Scholar 

  • Pavesi L (2003) A review of the various efforts to a silicon laser. Photonic West, San Diego

    Google Scholar 

  • Pavesi L, Negro LD, Mazzoleni C, Franzo G, Priolo F (2000) Optical gain in silicon nanocrystals. Nature 408:440–444

    Article  CAS  Google Scholar 

  • Prasad PN (2004) Nanophotonics. Wiley, New Jersey

    Book  Google Scholar 

  • Rezek B, Šípek E, Ledinský M, Stuchlík J, Vetushka A, Kočka J (2009) Creating nanocrystals in amorphous silicon using a conductive tip. Nanotechnology 20:045302

    Article  CAS  Google Scholar 

  • Rong HS, Xu SB, Kuo YH, Sih V, Cohen O, Raday O, Paniccia M (2007) Low-threshold continuous-wave Raman silicon laser. Nat Photonics 1:232–237

    Article  CAS  Google Scholar 

  • Rosso-Vasic M, Spruijt E, van Lagen B, Cola LD, Zuilhof H (2008) Alkyl-functionalized oxide-free silicon nanocrystals: synthesis and optical properties. Small 4:1835–1841

    Article  CAS  Google Scholar 

  • Sato K, Hirakuri K (2006a) Influence of paramagnetic defects on multicolored luminescence from nanocrystalline silicon. J Appl Phys 100:114303

    Article  Google Scholar 

  • Sato K, Hirakuri K (2006b) Three primary color luminescence from natively and thermally oxidized nanocrystalline silicon. J Vac Sci Technol, B 24:604–607

    Article  CAS  Google Scholar 

  • Valenta J, Pelant I, Linnros (2002) Waveguiding effects in the measurement of optical gain in a layer of Si nanocrystals. J Appl Phys Lett 81:1396–1398

    Article  CAS  Google Scholar 

  • Wang YQ, Wang YG, Cao L, Cao ZX (2003) High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride. Appl Phys Lett 83:3474–3476

    Article  CAS  Google Scholar 

  • Wang CJ, Tsai MY, Chi CC, Perng TP (2009a) Surface effects on the photoluminescence of Si quantum dots. J Nanopart Res 11:569–574

    Article  CAS  Google Scholar 

  • Wang M, Anopchenko A, Marconi A, Moser E, Prezioso S, Pavesi L, Pucher G, Bellutti P, Vanzetti L (2009b) Light emitting devices based on nanocrystalline-silicon multilayer structure. Physica E 41:912–915

    Article  CAS  Google Scholar 

  • Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-Soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44:4550–4554

    Article  CAS  Google Scholar 

  • Xie ZQ, Dan C, Li ZH, Zhao YY, Lu M (2007) A combined approach to greatly enhancing the photoluminescence of Si nanocrystals embedded in SiO2. Nanotechnology 18:115716

    Article  Google Scholar 

  • Xie ZQ, Zhu J, Zhang M, Zhao YY, Lu M (2009) A combined approach to fabricating Si nanocrystals with high photoluminescence intensity. Appl Surf Sci 255:3833–3836

    Article  CAS  Google Scholar 

  • Zhu J, Wu X, Zhang M, Wang Y, Ning XJ, Zhao YY, Lu M (2011) Photoluminescence responses of Si nanocrystal to differing pumping conditions. J Appl Phys 110:013502-1–013502-4

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China (973 Program), Grant No. 2012CB934303, the National Natural Science Foundation of China under Grant No. 10974034 and No. 60878044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Hao, HC., Li, D. et al. Matrix effect on the photoluminescence of Si nanocrystal. J Nanopart Res 14, 1097 (2012). https://doi.org/10.1007/s11051-012-1097-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1097-9

Keywords

Navigation