Skip to main content
Log in

Electrochemical synthesis of gold nanorods in track-etched polycarbonate membrane using removable mercury cathode

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The electrochemical template synthesis of gold nanorods within the cylindrical pores of track-etched polycarbonate (PC) membrane using a removable mercury cathode is reported. The novelty of this new approach is that it eliminates the requirement of coating an approximately 500 nm–1 μm-thick metallic layer, as conducting substrate, onto one surface of the insulating template membrane by the sputter deposition technique. A two-compartment electrochemical cell was designed and used for this work. The PC membrane was placed between the two compartments separating the aqueous solution of HAuCl4 from mercury. Mercury, filled in one of the compartments, is in contact with one surface of the membrane (similar to sputter-deposited metallic layer) and serves as the conducting substrate/cathode for the electrochemical deposition of gold in the nanopores of track-etched PC membrane. Once the electrodeposition is completed, the mercury and the HAuCl4 solution are removed from the compartments, and a malleable track-etched PC membrane embedded with free-standing gold nanorods is obtained. The ensemble of the metal nanorods grown in the template membrane is not attached to any conducting substrate, and gold nanorods can be freed from the template membrane after the dissolution. The Au-deposited PC membrane and free-standing Au nanorods were characterized by EDXRF, XRD, UV–Visible spectroscopy, AFM, and FEG-TEM. The EDXRF and XRD studies confirmed the deposition of the face-centered cubic phase of Au in the pores of the PC membrane. The TEM studies showed the formation of a cigar-shaped gold nanorod in the cylindrical pores of the PC membrane. The diameter of gold nanorods ranges from 100 to 200 nm. The new approach is simple, cost-effective, and saves time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1926

    Article  CAS  Google Scholar 

  • Bale SS, Asuri P, Karajanagi SS, Dordick JS, Kane RS (2007) Protein-directed formation of silver nanoparticles on carbon nanotubes. Adv Mater 19:3167–3170

    Article  CAS  Google Scholar 

  • Berry RS (1998) Size is everything. Nature 393:212–213

    Article  CAS  Google Scholar 

  • Cao Y-WC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    Article  CAS  Google Scholar 

  • Couzin J (2002) Nanoparticles cut tumor’s supply lines. Science 296:2314–2315

    Article  CAS  Google Scholar 

  • Elghanian R, Starhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  • El-Sayed MA (2004) Small is different: shape-, size- and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37:326–333

    Article  CAS  Google Scholar 

  • Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  CAS  Google Scholar 

  • Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  CAS  Google Scholar 

  • Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  Google Scholar 

  • Hernandez SC, Chaudhuri D, Chen W, Myung NV, Mulchandani A (2007) Single polypyrrole nanowire ammonia gas sensor. Electroanalysis 19:2125–2130

    Article  CAS  Google Scholar 

  • Hodes G (2007) When small is different: some recent advances in concepts and applications of nanoscale phenomena. Adv Mater 19:639–655

    Article  CAS  Google Scholar 

  • Huang MH, Choudrey A, Yang P (2000) Ag nanowire formation within mesoporous silica. Chem Commun 12:1063–1064

    Article  Google Scholar 

  • Ivanova OS, Zamborini FP (2010) Size-dependent electrochemical oxidation of silver nanoparticles. J Am Chem Soc 132:70–72

    Article  CAS  Google Scholar 

  • Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966

    Article  CAS  Google Scholar 

  • Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

  • Nalwa HS (2000) Handbook of nanostructured materials and nanotechnology. Academic Press, New York

    Google Scholar 

  • Pena DJ, Mbindyo JKN, Carado AJ, Mallouk TE, Keating CD, Razavi B, Mayer TS (2002) Template growth of photoconductive metal–CdSe–metal nanowires. J Phys Chem 106:7458–7462

    Article  CAS  Google Scholar 

  • Reetz MT, Helbig W (1994) Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116:7401–7402

    Article  CAS  Google Scholar 

  • Ruan C, Luo W, Wang W, Gu B (2007) Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples. Anal Chim Acta 605:80–86

    Article  CAS  Google Scholar 

  • Sakai N, Fujiwara Y, Arai M, Yu K, Tatsuma T (2009) Electrodeposition of gold nanoparticles on ITO: control of morphology and plasmon resonance-based absorption and scattering. J Electroanal Chem 628:7–15

    Article  CAS  Google Scholar 

  • Sanchez-Sanchez CM, Solla-Gullon J, Vidal-Iglesias FJ, Aldaz A, Montiel V, Herrero E (2010) Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J Am Chem Soc 132:5622–5624

    Article  CAS  Google Scholar 

  • Schmidt M, Kusche R, von Issendorff B, Haberland H (1998) Irregular variations in the melting point of size-selected atomic clusters. Nature 393:238–240

    Article  CAS  Google Scholar 

  • Schonenberger C, van der Zande BMI, Fokkink LGJ, Henny M, Schmid C, Kruger M, Bachtold A, Huber R, Birk H, Staufer U (1997) Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology. J Phys Chem B 101:5497–5505

    Article  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  • Tian Y, Liu H, Zhao G, Tatsuma T (2006) Shape-controlled electrodeposition of gold nanostructures. J Phys Chem B 110:23478–23481

    Article  CAS  Google Scholar 

  • Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterisation, and applications. Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  • Xiong Y, Xia Y (2007) Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv Mater 19:3385–3391

    Article  CAS  Google Scholar 

  • Yu-Ying Yu, Ser-Sing Chang, Chien-Liang Lee, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mr. B. T. Naidu Babu and Mr. L. S. Mombasawala for the FEG-TEM measurement in the Central Facility at SAIF, IIT Bombay. The authors also acknowledge the helpful discussions with Dr. A. K. Pandey, RCD, BARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Sharma.

Additional information

Special Issue Editors: Mamadou Diallo, Neil Fromer, Myung S. Jhon

This article is part of the Topical Collection on Nanotechnology for Sustainable Development

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, M.K., Ambolikar, A.S. & Aggarwal, S.K. Electrochemical synthesis of gold nanorods in track-etched polycarbonate membrane using removable mercury cathode. J Nanopart Res 14, 1094 (2012). https://doi.org/10.1007/s11051-012-1094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1094-z

Keywords

Navigation