Skip to main content
Log in

Toxicity of iron oxide nanoparticles against osteoblasts

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 μg/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 μg/mL and 25.9 % in 500 μg/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 μg/mL, 23.40 % of apoptosis in a concentration of 300 μg/mL and 28.49 % in a concentration of 500 μg/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D, Pacurari M, Porter D, Shi X, Vallyathan V, Castranova V, Flynn DC (2009) Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol 6:1. doi:10.1186/1743-8977-6-1

    Article  Google Scholar 

  • Arbab AS, Wilson LB, Ashari P, Jordan EK, Lewis BK, Frank JA (2005) A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (spio) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed 18(6):383–389. doi:10.1002/nbm.970

    Article  CAS  Google Scholar 

  • Berry CC, Wells S, Charles S, Curtis AS (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24(25):4551–4557

    Article  CAS  Google Scholar 

  • Berry CC, Wells S, Charles S, Aitchison G, Curtis AS (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25(23):5405–5413. doi:10.1016/j.biomaterials.2003.12.046

    Article  CAS  Google Scholar 

  • Buyukhatipoglu K, Clyne AM (2011) Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J Biomed Mater Res A 96(1):186–195. doi:10.1002/jbm.a.32972

    Google Scholar 

  • Frohlich E, Kueznik T, Samberger C, Roblegg E, Wrighton C, Pieber TR (2010) Size-dependent effects of nanoparticles on the activity of cytochrome p450 isoenzymes. Toxicol Appl Pharmacol 242(3):326–332. doi:10.1016/j.taap.2009.11.002

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  • Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2(1):23–39

    Article  CAS  Google Scholar 

  • Hong SC, Lee JH, Lee J, Kim HY, Park JY, Cho J, Han DW (2011) Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups. Int J Nanomed 6:3219–3231. doi:10.2147/IJN.S26355ijn-6-3219

    CAS  Google Scholar 

  • Kami D, Takeda S, Itakura Y, Gojo S, Watanabe M, Toyoda M (2011) Application of magnetic nanoparticles to gene delivery. Int J Mol Sci 12(6):3705–3722. doi:10.3390/ijms12063705

    Article  CAS  Google Scholar 

  • Lacava LM, Lacava ZG, Da Silva MF, Silva O, Chaves SB, Azevedo RB, Pelegrini F, Gansau C, Buske N, Sabolovic D, Morais PC (2001) Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice. Biophys J 80(5):2483–2486. doi:10.1016/S0006-3495(01)76217-0

    Article  CAS  Google Scholar 

  • Laurent S, Mahmoudi M (2011) Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. Int J Mol Epidemiol Genet 2(4):367–390

    CAS  Google Scholar 

  • Lee Y, Lee J, Bae CJ, Park JG, Noh HJ, Park JH, Hyeon T (2005) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15(3):503–509

    Article  CAS  Google Scholar 

  • Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18(4):410–414. doi:10.1038/74464

    Article  CAS  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (spions): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46. doi:10.1016/j.addr.2010.05.006

    Article  CAS  Google Scholar 

  • Masoudi A, Madaah Hosseini HR, Shokrgozar MA, Ahmadi R, Oghabian MA (2012) The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. Int J Pharm. doi:10.1016/j.ijpharm.2012.04.080

    Google Scholar 

  • Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17(2):1247–1248

    Article  Google Scholar 

  • Murray AR, Kisin E, Inman A, Young SH, Muhammed M, Burks T, Uheida A, Tkach A, Waltz M, Castranova V, Fadeel B, Kagan VE, Riviere JE, Monteiro-Riviere N, Shvedova AA (2012) Oxidative stress and dermal toxicity of iron oxide nanoparticles in vitro. Cell Biochem Biophys. doi:10.1007/s12013-012-9367-9

    Google Scholar 

  • Naqvi S, Samim M, Abdin M, Ahmed FJ, Maitra A, Prashant C, Dinda AK (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomed 5:983–989. doi:10.2147/IJN.S13244

    Article  CAS  Google Scholar 

  • Osaka T, Nakanishi T, Shanmugam S, Takahama S, Zhang H (2009) Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells. Colloids Surf B Biointerfaces 71(2):325–330

    Article  CAS  Google Scholar 

  • Pareta RA, Taylor E, Webster TJ (2008) Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles. Nanotechnology 19(26):265101. doi:10.1088/0957-4484/19/26/265101

    Article  Google Scholar 

  • Rahimi M, Wadajkar A, Subramanian K, Yousef M, Cui W, Hsieh JT, Nguyen KT (2010) In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. Nanomedicine 6(5):672–680. doi:10.1016/j.nano.2010.01.012

    Article  CAS  Google Scholar 

  • Safi M, Courtois J, Seigneuret M, Conjeaud H, Berret JF (2011) The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 32(35):9353–9363. doi:10.1016/j.biomaterials.2011.08.048

    Article  CAS  Google Scholar 

  • Schlachter EK, Widmer HR, Bregy A, Lonnfors-Weitzel T, Vajtai I, Corazza N, Bernau VJ, Weitzel T, Mordasini P, Slotboom J, Herrmann G, Bogni S, Hofmann H, Frenz M, Reinert M (2011) Metabolic pathway and distribution of superparamagnetic iron oxide nanoparticles: in vivo study. Int J Nanomed 6:1793–1800. doi:10.2147/IJN.S23638ijn-6-1793

    CAS  Google Scholar 

  • Schlorf T, Meincke M, Kossel E, Gluer CC, Jansen O, Mentlein R (2010) Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging. Int J Mol Sci 12(1):12–23. doi:10.3390/ijms12010012

    Article  Google Scholar 

  • Selvan ST (2010) Silica-coated quantum dots and magnetic nanoparticles for bioimaging applications (mini-review). Biointerphases 5(3):FA110–FA115. doi:10.1116/1.3516492

    Article  Google Scholar 

  • Shi Z, Huang X, Cai Y, Tang R, Yang D (2009) Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 5(1):338–345

    Article  CAS  Google Scholar 

  • Song M, Moon WK, Kim Y, Lim D, Song IC, Yoon BW (2007) Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells: comparison of ferumoxides, monocrystalline iron oxide, cross-linked iron oxide (clio)-nh2 and tat-clio. Korean J Radiol 8(5):365–371

    Article  Google Scholar 

  • Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205

    Article  CAS  Google Scholar 

  • Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44(10):842–852. doi:10.1021/ar200084x

    Article  CAS  Google Scholar 

  • Thorek DL, Tsourkas A (2008) Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29(26):3583–3590. doi:10.1016/j.biomaterials.2008.05.015

    Article  CAS  Google Scholar 

  • Tong S, Hou S, Zheng Z, Zhou J, Bao G (2010) Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 10(11):4607–4613. doi:10.1021/nl102623x

    Article  CAS  Google Scholar 

  • Tran N, Webster TJ (2011) Increased osteoblast functions in the presence of hydroxyapatite-coated iron oxide nanoparticles. Acta Biomater 7(3):1298–1306. doi:10.1016/j.actbio.2010.10.004

    Article  CAS  Google Scholar 

  • Wang L, Wang ZH, Shen CY, You ML, Xiao JF, Chen GQ (2010) Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials 31(7):1691–1698

    Article  CAS  Google Scholar 

  • Wilhelm CBC, Roger J, Pons JN, Bacri C, Gazeau F (2002) Intracellular uptake of anionic superparamagnetic nanoparticles as a function o their surface coating. Biomaterials 24(6):1001–1011

    Article  Google Scholar 

  • Wiogo HT, Lim M, Bulmus V, Yun J, Amal R (2011) Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS). Langmuir 27(2):843–850. doi:10.1021/la104278m

    Article  CAS  Google Scholar 

  • Zhang DE, Tong ZW, Li SZ, Zhang XB, Ying A (2008) Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion. Mater Lett 62(24):4053–4055

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Integration of Medicine and Engineering Foundation of Shanghai Jiao tong University (YG2010MS33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-long Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Sf., Jia, Jf., Guo, Xk. et al. Toxicity of iron oxide nanoparticles against osteoblasts. J Nanopart Res 14, 1091 (2012). https://doi.org/10.1007/s11051-012-1091-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1091-2

Keywords

Navigation