Journal of Nanoparticle Research

, 14:1072 | Cite as

Self organization in oleic acid-coated CoFe2O4 colloids: a SAXS study

  • M. B. Fernández van RaapEmail author
  • P. Mendoza Zélis
  • D. F. Coral
  • T. E. Torres
  • C. Marquina
  • G. F. Goya
  • F. H. Sánchez
Research Paper


We report a structural study of magnetic colloids composed of CoFe2O4 nanoparticles (mean radii in the range 2–7 nm) synthesized by thermal decomposition of different high boiling temperature organic solvents in the presence of oleic acid and oleylamine, and subsequently re-suspended in hexane. Although the surfactant layer prevents permanent aggregation and precipitation of the disperse phase, competition between attractive interactions (i.e., dipolar and van der Waals) and repulsive steric interaction leads to self organization of the magnetic nanoparticles. Our small angle X-ray scattering results evidence the presence of distinctive self organized structures in the liquid colloid depending on the type of solvent used in the synthesis. A completely homogeneous dispersion is obtained for those colloids synthesized with benzyl-ether and octadecene. Bi-disperse systems, in which nanoclusters coexist with free nanoparticles, appear when phenyl-ether and trioctylamine are used. Chain-like structures are observed in a colloid containing the particles synthesized using phenyl-ether, while more compact 3D structures form in colloids prepared with particles synthesized with trioctylamine. The presented results have important implications in the design and selection of magnetic nanoparticles for those applications where the size dispersion determines the final efficiency of the material, such as magnetic fluid hyperthermia clinical therapy.


Magnetic colloids Aggregation Dipolar interaction London–van der Waals interaction Small angle X-ray scattering 



We thank financial support from: LNLS synchrotron, Campinas, SP, Brazil under proposals D11A-SAXS1-9293, CONICET (PIP 01111) and ANPCyT (PICT 00898) of Argentina and the Spanish Ministerio de Ciencia e Innovación (projects MAT2010-19326 and CONSOLIDER NANOBIOMED CS-27 2006). Valuable help of Dr. A. Ibarra on TEM analysis and Dr. Aldo Craievich on SAXS data analysis is deeply acknowledged.


  1. Bae KH, Park M, Do MJ, Lee N, Ryu JH, Kim GW, Kim C, Park TG, Hyeon T (2012) Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6(6):5266–5273. doi: 10.1021/nn301046w CrossRefGoogle Scholar
  2. Barbeta VB, Jardim RF, Kiyohara PK, Effenberger FB, Rossi LM (2010) Magnetic properties of Fe3O4 nanoparticles coated with oleic and dodecanoic acids. J Appl Phys 107(7):073913. doi: 10.1063/1.3311611 CrossRefGoogle Scholar
  3. Benkoski JJ, Bowles SE, Korth BD, Jones RL, Douglas JF, Karim A, Pyun J (2007) Field induced formation of mesoscopic polymer chains from functional ferromagnetic colloids. J Am Chem Soc 129(19):6291–6297. doi: 10.1021/ja070779d CrossRefGoogle Scholar
  4. Bonini M, Fratini E, Baglioni P (2007) SAXS study of chain-like structures formed by magnetic nanoparticles. Mater Sci Eng, C 27(5–8):1377–1381. doi: 10.1016/j.msec.2006.09.002 CrossRefGoogle Scholar
  5. Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Grübel G, Weller H (2005) Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. Langmuir 21(5):1931–1936. doi: 10.1021/la0477183 CrossRefGoogle Scholar
  6. Chen SH, Teixeira J (1986) Structure and fractal dimension of protein-detergent complexes. Phys Rev Lett 57:2583–2586. doi: 10.1103/PhysRevLett.57.2583 CrossRefGoogle Scholar
  7. Coey JMD (1971) Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys Rev Lett 27:1140–1142. doi: 10.1103/PhysRevLett.27.1140 CrossRefGoogle Scholar
  8. Croucher MD, Hair ML (1977) Hamaker constants and the principle of corresponding states. J Phys Chem 81(17):1631–1636. doi: 10.1021/j100532a006 CrossRefGoogle Scholar
  9. Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P (2008) Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transfer 51(5–6):1431–1438. doi: 10.1016/j.ijheatmasstransfer.2007.10.017 CrossRefGoogle Scholar
  10. Faure B, Salazar-Alvarez G, Bergstrom L (2011) Hamaker constants of iron oxide nanoparticles. Langmuir 27(14):8659–8664. doi: 10.1021/la201387d CrossRefGoogle Scholar
  11. Freltoft T, Kjems JK, Sinha SK (1986) Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering. Phys Rev B 33:269–275. doi: 10.1103/PhysRevB.33.269 CrossRefGoogle Scholar
  12. Gilbert B, Lu G, Kim CS (2007) Stable cluster formation in aqueous suspensions of iron oxyhydroxide nanoparticles. J Colloid Interface Sci 313(1):152–159. doi: 10.1016/j.jcis.2007.04.038 CrossRefGoogle Scholar
  13. Gonzalez-Fernandez MA, Torres TE, Andrs-Vergs M, Costo R, de la Presa P, Serna CJ, Morales MP, Marquina C, Ibarra MR, Goya GF (2009) Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties. J Solid State Chem 182(10):2779–2784. doi: 10.1016/j.jssc.2009.07.047 CrossRefGoogle Scholar
  14. Haase C, Nowak U (2012) Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles. Phys Rev B 85:045–435. doi: 10.1103/PhysRevB.85.045435 Google Scholar
  15. Hamaker HC (1937) The Londonvan der Waals attraction between spherical particles. Physica 4(10):1058–1072. doi: 10.1016/S0031-8914(37)80203-7 CrossRefGoogle Scholar
  16. Huang TC, Toraya H, Blanton TN, Wu Y (1993) X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J Appl Crystallogr 26(2):180–184. doi: 10.1107/S0021889892009762 CrossRefGoogle Scholar
  17. Kellermann G, Vicentin F, Tamura E, Rocha M, Tolentino H, Barbosa A, Craievich A, Torriani I (1997) The small-angle X-ray scattering beamline of the Brazilian Synchrotron Light Laboratory. J Appl Crystallogr 30(5-2):880–883. doi: 10.1107/S0021889897001829 CrossRefGoogle Scholar
  18. Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, Shin K, Lee Y, Kwon SG, Na HB, Park JG, Ahn TY, Kim YW, Moon WK, Choi SH, Hyeon T (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution t1 magnetic resonance imaging contrast agents. J Am Chem Soc 133(32):12624–12631. doi: 10.1021/ja203340 CrossRefGoogle Scholar
  19. Kruglyakov PM (2000) Chapter 2 Stabilising ability of surfactants in emulsification and foam formation. In: Kruglyakov PM (ed) Hydrophile-Lipophile balance of surfactants and solid particles physicochemical aspects and applications, studies in interface science, vol 9, Elsevier, pp 100–145, doi: 10.1016/S1383-7303(00)80015-0
  20. Kruse T, Krauthäuser HG, Spanoudaki A, Pelster R (2003a) Agglomeration and chain formation in ferrofluids: two-dimensional X-ray scattering. Phys Rev B 67:094,206. doi: 10.1103/PhysRevB.67.094206 CrossRefGoogle Scholar
  21. Kruse T, Spanoudaki A, Pelster R (2003b) Monte carlo simulations of polydisperse ferrofluids: cluster formation and field-dependent microstructure. Phys Rev B 68:054208. doi: 10.1103/PhysRevB.68.054208 CrossRefGoogle Scholar
  22. Kwak K, Kim C (2005) Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Rheology 17(2):35–40Google Scholar
  23. Orthaber D, Bergmann A, Glatter O (2000) SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J Appl Crystallogr 33(2):218–225. doi: 10.1107/S0021889899015216 CrossRefGoogle Scholar
  24. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895CrossRefGoogle Scholar
  25. Pshenichnikov AF, Mekhonoshin V (2001) Cluster structure and the first-order phase transition in dipolar systems monte carlo simulation. Eur Phys J E 6:399–407. doi: 10.1007/s10189-001-8053-5 CrossRefGoogle Scholar
  26. Roca AG, Morales MP, O’Grady K, Serna CJ (2006) Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17(11):2783. doi: 10.1088/0957-4484/17/11/010 CrossRefGoogle Scholar
  27. Rosensweig RE (1997) Ferrohydrodynamics. Dover books on physics. Dover Publications, New York.
  28. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252(0):370–374. doi: 10.1016/S0304-8853(02)00706-0 CrossRefGoogle Scholar
  29. Shen L, Stachowiak A, Fateen SEK, Laibinis PE, Hatton TA (2001) Structure of alkanoic acid stabilized magnetic fluids. A small-angle neutron and light scattering analysis. Langmuir 17(2):288–299. doi: 10.1021/la9916732 CrossRefGoogle Scholar
  30. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279. doi: 10.1021/ja0380852 CrossRefGoogle Scholar
  31. Torres TE, Roca AG, Morales MP, Ibarra A, Marquina C, Ibarra MR, Goya GF (2010) Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia. J Phys Conf Ser 200(7):072,101. doi: 10.1088/1742-6596/200/7/072101 CrossRefGoogle Scholar
  32. Verde EL, Landi GT, Gomes JA, Sousa MH, Bakuzis AF (2012) Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations. J Appl Phys 111(12):123902–123910. doi: 10.1063/1.4729271 CrossRefGoogle Scholar
  33. Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, Muldoon LL, Neuwelt EA (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30(1):15–35. doi: 10.1038/jcbfm.2009.192 CrossRefGoogle Scholar
  34. Wu N, Fu L, Su M, Aslam M, Wong KC, Dravid VP (2004) Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett 4(2):383–386. doi: 10.1021/nl035139x CrossRefGoogle Scholar
  35. Zubarev AY, Odenbach S, Fleischer J (2002) Rheological properties of dense ferrofluids. Effect of chain-like aggregates. J Magn Magn Mater 252(0):241–243. doi: 10.1016/S0304-8853(02)00674-1 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. B. Fernández van Raap
    • 1
    Email author
  • P. Mendoza Zélis
    • 1
  • D. F. Coral
    • 1
  • T. E. Torres
    • 2
    • 5
  • C. Marquina
    • 2
    • 4
  • G. F. Goya
    • 2
    • 3
  • F. H. Sánchez
    • 1
  1. 1.IFLP-CONICET and Departamento de FísicaUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Departamento de Física de la Materia CondensadaUniversidad de ZaragozaZaragozaSpain
  3. 3.Instituto de Nanociencia de Aragón (INA)Universidad de ZaragozaZaragozaSpain
  4. 4.Instituto de Ciencia de Materiales de Aragón (ICMA)CSIC-Universidad de ZaragozaZaragozaSpain
  5. 5.Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA)Universidad de ZaragozaZaragozaSpain

Personalised recommendations