Skip to main content
Log in

Uniform growth of clusters of magnetic nanoparticles in a rotating magnetic field

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

It was recently shown that the exposure of magnetic microbeads to a homogeneous magnetic field, which rotates around the axis perpendicular to the field direction, generates highly ordered two-dimensional particle arrays. In this work, the impact of downscaling such systems is analyzed. Dilutions of cobalt nanoparticles with an average diameter of 6 nm were brought into a rotating homogeneous magnetic field. A strong localization of the number of particles within a certain cluster size can be observed if the rotation frequency is adjusted to a specific particle concentration. In particular, we obtain an increase of 85 % of the maximum of the cluster size distribution, when changing the rotation frequency of the magnetic field from 300 to 750 rpm for a cobalt concentration of 35.95 mmol/l. We propose a heuristic model to explain the observed frequency dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cebers A, Ozols M (2006) Dynamics of an active magnetic particle in a rotating magnetic field. Phys Rev E 73:021505

    Article  CAS  Google Scholar 

  • Hütten A, Sudfeld D, Ennen I, Reiss G, Hachmann W, Heinzmann U, Wojczykowski K, Jutzi P, Saikaly W, Thomas G (2004) New magnetic nanoparticles for biotechnology. J Biotechnol 112:47–63

    Article  Google Scholar 

  • Kim YS, Park IH (2010) FE analysis of magnetic particle dynamics on fixed mesh with level set function. IEEE Trans Magn 46(8):3225–3228

    Article  Google Scholar 

  • Lalatonne Y, Richardi J, Pileni MP (2004) Van der Waals versus dipolar forces controllino mesoscopic organizations of magnetic nanocrystals. Nat Mater 3:121–125

    Article  CAS  Google Scholar 

  • LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  CAS  Google Scholar 

  • Mørup S, Hansen MF, Frandsen C (2010) Magnetic interactions between nanoparticles. Beilstein J Nanotechnol 1:182–190

    Article  Google Scholar 

  • Moser A, Takano K, Margulies D, Albrecht M, Sonobe Y, Ikeda Y, Sun S, Fullerton EE (2002) Magnetic recording: advancing into the future. J Phys D Appl Phys 35:R157–R167

    Article  CAS  Google Scholar 

  • Petousis I, Homburg E, Derks R, Dietzel A (2007) Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields. Lab Chip 7:1746–1751

    Article  CAS  Google Scholar 

  • Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117

    Article  CAS  Google Scholar 

  • Rinn B, Zahn K, Maass P, Maret G (1999) Influence of hydrodynamic interactions on the dynamics of long-range interacting colloidal particles. Europhys Lett 46(4):537–541

    Article  CAS  Google Scholar 

  • Sun S (2006) Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater 18:393–403

    Article  CAS  Google Scholar 

  • Weddemann A, Ennen I, Regtmeier A, Albon C, Wolff A, Eckstädt K, Mill N, Peter MKH, Mattay J, Plattner C, Sewald N, Hütten A (2010a) Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors. Beilstein J Nanotechnol 1:75–93

    Article  CAS  Google Scholar 

  • Weddemann A, Wittbracht F, Eickenberg B, Hütten A (2010b) Magnetic field induced assembly of highly ordered two-dimensional particle arrays. Langmuir 26(24):19225–19229

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the SFB 613 and the FOR 945 for financial support in the framework of the project K3 and project 3, respectively. Alexander Weddemann gratefully acknowledges financial funding from the Alexander von Humboldt foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wittbracht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regtmeier, A., Wittbracht, F., Rempel, T. et al. Uniform growth of clusters of magnetic nanoparticles in a rotating magnetic field. J Nanopart Res 14, 1061 (2012). https://doi.org/10.1007/s11051-012-1061-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1061-8

Keywords

Navigation