Skip to main content

Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition-grown InN thin film

Abstract

We report the synthesis of colloidal InN nanocrystals (InN-NCs) in organic solution through nanosecond pulsed laser ablation of high pressure chemical vapor deposition-grown InN thin film on GaN/sapphire template substrate. The size, the structural, the optical, and the chemical characteristics of InN-NCs demonstrate that the colloidal InN crystalline nanostructures in ethanol are synthesized with spherical shape within 5.9–25.3, 5.45–34.8, 3.24–36 nm particle-size distributions, increasing the pulse energy value. The colloidal InN-NCs solutions present strong absorption edge tailoring from NIR region to UV region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alevli M, Durkaya G, Weerasekara A, Perera AGU, Dietz N (2006) Characterization of InN layers grown by high-pressure chemical vapor deposition. Appl Phys Lett 89:112119

    Article  Google Scholar 

  • Alevli M, Atalay R, Durkaya G, Weesekara A, Perera AGU, Dietz N, Kirste R, Hoffman A (2008) Optical characterization of InN layers grown by high-pressure chemical vapor deposition. J Vac Sci Technol A 26:1023–1026

    Article  CAS  Google Scholar 

  • Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821

    Article  CAS  Google Scholar 

  • Briot O, Maleyre B, Ruffenach S (2003) Indium nitride quantum dots grown by metalorganic vapor phase epitaxy. Appl Phys Lett 83:2919–2921

    Article  CAS  Google Scholar 

  • Buegler M, Gamage S, Atalay R, Wang J, Senevirethna MKI, Kirste R, Xu T, Jamil M, Ferguson I, Tweedie J, Callazo R, Hoffman A, Dietz N (2011) Growth temperature and growth rate dependency on reactor pressure for InN epilayers grown by HPCVD. Phys Status Solidi C 8:2059–2062

    Article  CAS  Google Scholar 

  • Butcher KSS, Tansley TL (2005) InN, latest development and a review of the band-gap controversy. Superlattices Microstruct 38:1–37

    Article  CAS  Google Scholar 

  • Cardelino BH, Moore CE, Cardelino CA, Dietz N (2005) Advanced computational modeling for growing III–V materials in a high-pressure chemical vapor-deposition reactor. Proc SPIE 5912:86–99

    Google Scholar 

  • Chen Z, Li Y, Cao C, Zhao S, Fathololoumi S, Mi Z, Xu X (2011) Large-scale InN nanocrystals by a combined solution- and vapor-phase method under silica confinement. J Am Chem Soc 134(2):780–783. doi:10.1021/ja209072v

    Article  Google Scholar 

  • Cumberland RW, Blair RG, Wallace CH, Reynolds TK, Kaner RB (2001) Thermal control of metathesis reactions producing GaN and InN. J Phys Chem B 105:11922–11927

    Article  CAS  Google Scholar 

  • Davydov VY, Klochikhin AA (2004) Electronic and vibrational states in InN and In x Ga1−x N solid solutions. Semiconductors 38:861–898

    Article  CAS  Google Scholar 

  • Deniz AE, Vural HA, Ortac B, Uyar T (2011) Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning. Mater Lett 65:2941–2943

    Article  CAS  Google Scholar 

  • Dietz N, Strassburg M, Woods V (2005a) Real-time optical monitoring of ammonia flow and decomposition kinetics under high-pressure chemical vapor deposition conditions. J Vac Sci Technol A 23:1221–1227

    Article  CAS  Google Scholar 

  • Dietz N, Alevli M, Woods V, Strassburg M, Kang H, Ferguson IT (2005b) The characterization of InN growth under high-pressure CVD conditions. Phys Stat Sol (b) 242:2985–2994

    Article  CAS  Google Scholar 

  • Dietz N, Alevli M, Atalay R, Durkaya G, Collazo R, Tweedie J, Mita S, Sitar Z (2008) The influence of substrate polarity on the structural quality of InN layers grown by high-pressure chemical vapor deposition. Appl Phys Lett 92:041911

    Article  Google Scholar 

  • He C, Sasaki T, Usui H, Shimizu Y, Koshizaki N (2007) Fabrication of ZnO nanoparticles by pulsed laser ablation in aqueous media and pH-dependent particle size: an approach to study the mechanism of enhanced green photoluminescence. J Photochem Photobiol, A 191:66–73

    Article  CAS  Google Scholar 

  • Hong SY, Popovitz-Biro R, Prior Y, Tenne R (2003) Synthesis of Sns2/Sns fullerene-like nanoparticles: a superlattice with polyhedral shape. J Am Chem Soc 125:10470–10474

    Article  CAS  Google Scholar 

  • Hsieh JC, Yun DS, Hu E, Belcher AM (2009) Ambient pressure, low-temperature synthesis and characterization of colloidal InN nanocrystals. J Mater Chem 20:1435–1437

    Article  Google Scholar 

  • Hu MS, Wang WM, Chen TT, Hong LS, Chen CW, Chen CC, Chen YF, Chen KH, Chen LC (2006) Sharp infrared emission from single-crystalline indium nitride nanobelts prepared using guided-stream thermal chemical vapor deposition. Adv Funct Mater 16:537–541

    Article  CAS  Google Scholar 

  • Intartaglia R, Bagga K, Brandi F, Das G, Genovese A, Di Fabrizio E, Diaspro A (2011) Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water. J Phys Chem C 115:5102–5107

    Article  CAS  Google Scholar 

  • Kurimoto E, Hangyo M, Harima H, Yoshimoto M, Yamaguchi T, Araki T, Nanishi Y, Kisoda K (2004) Spectroscopic observation of oxidation process in InN. Appl Phys Lett 84:212–214

    Article  CAS  Google Scholar 

  • Kuzmin PG, Shafeev GA, Bukin VV, Garnov SV, Farcau C, Carles R, Warot-Fontrose B, Guieu V, Viau G (2010) Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties. J Phys Chem C 114:15266–15273

    Article  CAS  Google Scholar 

  • Liu P, Cui H, Yang GW (2008a) Synthesis of body-centered cubic carbon nanocrystals. Cryst Growth Des 8:581–586

    Article  CAS  Google Scholar 

  • Liu P, Cao YL, Cui H, Chen XY, Yang GW (2008b) Synthesis of GaN nanocrystals through phase transition from hexagonal to cubic structures upon laser ablation in liquid. Cryst Growth Des 8:559–563

    Article  CAS  Google Scholar 

  • Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000a) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337

    Article  CAS  Google Scholar 

  • Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000b) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117

    Article  CAS  Google Scholar 

  • Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120

    Article  CAS  Google Scholar 

  • Mohammad SN, Morkoc H (1996) Progress and prospects of group-III nitride semiconductors. Progr Quantum Electron 20:361–525

    Article  CAS  Google Scholar 

  • Nishi T, Takeichi A, Azuma H, Suzuki N, Hioki T, Motohiro T (2010) Fabrication of palladium nanoparticles by laser ablation in liquid. J Laser Micro/Nanoeng 5:192–196

    Article  CAS  Google Scholar 

  • Niu KY, Yang J, Kulinich SA, Sun J, Li H, Du XW (2010) Morphology control of nanostructures via surface reaction of metal nanodroplets. J Am Chem Soc 132:9814–9819

    Article  CAS  Google Scholar 

  • Ponce FA, Bour DB (1997) Nitride-based semiconductors for blue and green light-emitting devices. Nature 386:351–359

    Article  CAS  Google Scholar 

  • Sardar K, Deepak FL, Govindaraj A, Seikh MM, Rao CNR (2005) InN nanocrystals, nanowires, and nanotubes. Small 1:91–94

    Article  CAS  Google Scholar 

  • Schwenzer B, Meier C, Masala O, Seshadri R, DenBaars SP, Mishra UK (2005) Synthesis of luminescing (In,Ga)N nanoparticles from an inorganic ammonium fluoride precursor. J Mater Chem 15:1891–1895

    Article  CAS  Google Scholar 

  • Švrček V, Sasaki T, Shimizu Y, Koshizaki N (2006) Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water. Appl Phys Lett 89:213113

    Article  Google Scholar 

  • Sylvestre J, Kabashin A, Sacher E, Meunier M, Luong J (2004) Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J Am Chem Soc 126:7176–7177

    Article  CAS  Google Scholar 

  • Tan M, Munusamy P, Mahalingam V, Van Veggel F (2007) Blue electroluminescence from InN@SiO2 nanomaterials. J Am Chem Soc 129:14122–14123

    Article  CAS  Google Scholar 

  • Woods V, Dietz N (2006) InN growth by high-pressures chemical vapor deposition: real-time optical growth characterization. Mater Sci Eng B 127:239–250

    Article  CAS  Google Scholar 

  • Wu J, Walukiewicz W, Yu KM, Ager JW, Haller EE, Lu H, Schaff WJ, Saito Y, Nanishi Y (2002) Unusual properties of the fundamental band gap of InN. Appl Phys Lett 80:3967–3969

    Article  CAS  Google Scholar 

  • Wu C, Li T, Lei L, Hu S, Liu Y, Xie Y (2005) Indium nitride from indium iodide at low temperatures: synthesis and their optical properties. New J Chem 29:1610–1615

    Article  CAS  Google Scholar 

  • Xiao J, Xie Y, Tang R, Luo W (2003) Benzene thermal conversion to nanocrystalline indium nitride from sulfide at low temperature. Inorg Chem 42:107–111

    Article  CAS  Google Scholar 

  • Yang S, Cai W, Zeng H, Li Z (2008) Polycrystalline Si nanoparticles and their strong aging enhancement of blue photoluminescence. J Appl Phys 104:023516

    Article  Google Scholar 

  • Zhang J, Zhang L, Peng X, Wang X (2002) Vapor–solid growth route to single-crystalline indium nitride nanowires. J Mater Chem 12:802–804

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The State Planning Organization (DPT) of Turkey is acknowledged for its support of UNAM Institute of Materials Science and Nanotechnology. Dr. Ortaç acknowledges the “Industrial Thesis Projects Programme” of the Ministry of Industry and Trade for funding the San-Tez (636.STZ.2010-1) project. Dr. Okyay acknowledges TUBITAK and EU FP7 for funding 108E163, 109E044, and PIOS 239444 projects. Dr. Alkis acknowledges TUBITAK-BIDEB for research support. The authors thank Mustafa Güler for TEM imaging and Enver Kahveci for the XPS study. The authors thank Dr. Nikolaus Dietz from Georgia State University, Atlanta, U.S.A, for providing InN samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sabri Alkis or Bülend Ortaç.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alkis, S., Alevli, M., Burzhuev, S. et al. Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition-grown InN thin film. J Nanopart Res 14, 1048 (2012). https://doi.org/10.1007/s11051-012-1048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1048-5

Keywords

  • High pressure chemical vapor deposition
  • Laser ablation of InN thin film in organic solution
  • InN nanocrystal synthesis