Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition-grown InN thin film

  • Sabri Alkis
  • Mustafa Alevli
  • Salamat Burzhuev
  • Hüseyin Avni Vural
  • Ali Kemal Okyay
  • Bülend Ortaç
Research Paper

Abstract

We report the synthesis of colloidal InN nanocrystals (InN-NCs) in organic solution through nanosecond pulsed laser ablation of high pressure chemical vapor deposition-grown InN thin film on GaN/sapphire template substrate. The size, the structural, the optical, and the chemical characteristics of InN-NCs demonstrate that the colloidal InN crystalline nanostructures in ethanol are synthesized with spherical shape within 5.9–25.3, 5.45–34.8, 3.24–36 nm particle-size distributions, increasing the pulse energy value. The colloidal InN-NCs solutions present strong absorption edge tailoring from NIR region to UV region.

Keywords

High pressure chemical vapor deposition Laser ablation of InN thin film in organic solution InN nanocrystal synthesis 

References

  1. Alevli M, Durkaya G, Weerasekara A, Perera AGU, Dietz N (2006) Characterization of InN layers grown by high-pressure chemical vapor deposition. Appl Phys Lett 89:112119CrossRefGoogle Scholar
  2. Alevli M, Atalay R, Durkaya G, Weesekara A, Perera AGU, Dietz N, Kirste R, Hoffman A (2008) Optical characterization of InN layers grown by high-pressure chemical vapor deposition. J Vac Sci Technol A 26:1023–1026CrossRefGoogle Scholar
  3. Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821CrossRefGoogle Scholar
  4. Briot O, Maleyre B, Ruffenach S (2003) Indium nitride quantum dots grown by metalorganic vapor phase epitaxy. Appl Phys Lett 83:2919–2921CrossRefGoogle Scholar
  5. Buegler M, Gamage S, Atalay R, Wang J, Senevirethna MKI, Kirste R, Xu T, Jamil M, Ferguson I, Tweedie J, Callazo R, Hoffman A, Dietz N (2011) Growth temperature and growth rate dependency on reactor pressure for InN epilayers grown by HPCVD. Phys Status Solidi C 8:2059–2062CrossRefGoogle Scholar
  6. Butcher KSS, Tansley TL (2005) InN, latest development and a review of the band-gap controversy. Superlattices Microstruct 38:1–37CrossRefGoogle Scholar
  7. Cardelino BH, Moore CE, Cardelino CA, Dietz N (2005) Advanced computational modeling for growing III–V materials in a high-pressure chemical vapor-deposition reactor. Proc SPIE 5912:86–99Google Scholar
  8. Chen Z, Li Y, Cao C, Zhao S, Fathololoumi S, Mi Z, Xu X (2011) Large-scale InN nanocrystals by a combined solution- and vapor-phase method under silica confinement. J Am Chem Soc 134(2):780–783. doi:10.1021/ja209072v CrossRefGoogle Scholar
  9. Cumberland RW, Blair RG, Wallace CH, Reynolds TK, Kaner RB (2001) Thermal control of metathesis reactions producing GaN and InN. J Phys Chem B 105:11922–11927CrossRefGoogle Scholar
  10. Davydov VY, Klochikhin AA (2004) Electronic and vibrational states in InN and InxGa1−xN solid solutions. Semiconductors 38:861–898CrossRefGoogle Scholar
  11. Deniz AE, Vural HA, Ortac B, Uyar T (2011) Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning. Mater Lett 65:2941–2943CrossRefGoogle Scholar
  12. Dietz N, Strassburg M, Woods V (2005a) Real-time optical monitoring of ammonia flow and decomposition kinetics under high-pressure chemical vapor deposition conditions. J Vac Sci Technol A 23:1221–1227CrossRefGoogle Scholar
  13. Dietz N, Alevli M, Woods V, Strassburg M, Kang H, Ferguson IT (2005b) The characterization of InN growth under high-pressure CVD conditions. Phys Stat Sol (b) 242:2985–2994CrossRefGoogle Scholar
  14. Dietz N, Alevli M, Atalay R, Durkaya G, Collazo R, Tweedie J, Mita S, Sitar Z (2008) The influence of substrate polarity on the structural quality of InN layers grown by high-pressure chemical vapor deposition. Appl Phys Lett 92:041911CrossRefGoogle Scholar
  15. He C, Sasaki T, Usui H, Shimizu Y, Koshizaki N (2007) Fabrication of ZnO nanoparticles by pulsed laser ablation in aqueous media and pH-dependent particle size: an approach to study the mechanism of enhanced green photoluminescence. J Photochem Photobiol, A 191:66–73CrossRefGoogle Scholar
  16. Hong SY, Popovitz-Biro R, Prior Y, Tenne R (2003) Synthesis of Sns2/Sns fullerene-like nanoparticles: a superlattice with polyhedral shape. J Am Chem Soc 125:10470–10474CrossRefGoogle Scholar
  17. Hsieh JC, Yun DS, Hu E, Belcher AM (2009) Ambient pressure, low-temperature synthesis and characterization of colloidal InN nanocrystals. J Mater Chem 20:1435–1437CrossRefGoogle Scholar
  18. Hu MS, Wang WM, Chen TT, Hong LS, Chen CW, Chen CC, Chen YF, Chen KH, Chen LC (2006) Sharp infrared emission from single-crystalline indium nitride nanobelts prepared using guided-stream thermal chemical vapor deposition. Adv Funct Mater 16:537–541CrossRefGoogle Scholar
  19. Intartaglia R, Bagga K, Brandi F, Das G, Genovese A, Di Fabrizio E, Diaspro A (2011) Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water. J Phys Chem C 115:5102–5107CrossRefGoogle Scholar
  20. Kurimoto E, Hangyo M, Harima H, Yoshimoto M, Yamaguchi T, Araki T, Nanishi Y, Kisoda K (2004) Spectroscopic observation of oxidation process in InN. Appl Phys Lett 84:212–214CrossRefGoogle Scholar
  21. Kuzmin PG, Shafeev GA, Bukin VV, Garnov SV, Farcau C, Carles R, Warot-Fontrose B, Guieu V, Viau G (2010) Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties. J Phys Chem C 114:15266–15273CrossRefGoogle Scholar
  22. Liu P, Cui H, Yang GW (2008a) Synthesis of body-centered cubic carbon nanocrystals. Cryst Growth Des 8:581–586CrossRefGoogle Scholar
  23. Liu P, Cao YL, Cui H, Chen XY, Yang GW (2008b) Synthesis of GaN nanocrystals through phase transition from hexagonal to cubic structures upon laser ablation in liquid. Cryst Growth Des 8:559–563CrossRefGoogle Scholar
  24. Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000a) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337CrossRefGoogle Scholar
  25. Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000b) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117CrossRefGoogle Scholar
  26. Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120CrossRefGoogle Scholar
  27. Mohammad SN, Morkoc H (1996) Progress and prospects of group-III nitride semiconductors. Progr Quantum Electron 20:361–525CrossRefGoogle Scholar
  28. Nishi T, Takeichi A, Azuma H, Suzuki N, Hioki T, Motohiro T (2010) Fabrication of palladium nanoparticles by laser ablation in liquid. J Laser Micro/Nanoeng 5:192–196CrossRefGoogle Scholar
  29. Niu KY, Yang J, Kulinich SA, Sun J, Li H, Du XW (2010) Morphology control of nanostructures via surface reaction of metal nanodroplets. J Am Chem Soc 132:9814–9819CrossRefGoogle Scholar
  30. Ponce FA, Bour DB (1997) Nitride-based semiconductors for blue and green light-emitting devices. Nature 386:351–359CrossRefGoogle Scholar
  31. Sardar K, Deepak FL, Govindaraj A, Seikh MM, Rao CNR (2005) InN nanocrystals, nanowires, and nanotubes. Small 1:91–94CrossRefGoogle Scholar
  32. Schwenzer B, Meier C, Masala O, Seshadri R, DenBaars SP, Mishra UK (2005) Synthesis of luminescing (In,Ga)N nanoparticles from an inorganic ammonium fluoride precursor. J Mater Chem 15:1891–1895CrossRefGoogle Scholar
  33. Švrček V, Sasaki T, Shimizu Y, Koshizaki N (2006) Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water. Appl Phys Lett 89:213113CrossRefGoogle Scholar
  34. Sylvestre J, Kabashin A, Sacher E, Meunier M, Luong J (2004) Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J Am Chem Soc 126:7176–7177CrossRefGoogle Scholar
  35. Tan M, Munusamy P, Mahalingam V, Van Veggel F (2007) Blue electroluminescence from InN@SiO2 nanomaterials. J Am Chem Soc 129:14122–14123CrossRefGoogle Scholar
  36. Woods V, Dietz N (2006) InN growth by high-pressures chemical vapor deposition: real-time optical growth characterization. Mater Sci Eng B 127:239–250CrossRefGoogle Scholar
  37. Wu J, Walukiewicz W, Yu KM, Ager JW, Haller EE, Lu H, Schaff WJ, Saito Y, Nanishi Y (2002) Unusual properties of the fundamental band gap of InN. Appl Phys Lett 80:3967–3969CrossRefGoogle Scholar
  38. Wu C, Li T, Lei L, Hu S, Liu Y, Xie Y (2005) Indium nitride from indium iodide at low temperatures: synthesis and their optical properties. New J Chem 29:1610–1615CrossRefGoogle Scholar
  39. Xiao J, Xie Y, Tang R, Luo W (2003) Benzene thermal conversion to nanocrystalline indium nitride from sulfide at low temperature. Inorg Chem 42:107–111CrossRefGoogle Scholar
  40. Yang S, Cai W, Zeng H, Li Z (2008) Polycrystalline Si nanoparticles and their strong aging enhancement of blue photoluminescence. J Appl Phys 104:023516CrossRefGoogle Scholar
  41. Zhang J, Zhang L, Peng X, Wang X (2002) Vapor–solid growth route to single-crystalline indium nitride nanowires. J Mater Chem 12:802–804CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sabri Alkis
    • 1
    • 2
  • Mustafa Alevli
    • 3
  • Salamat Burzhuev
    • 1
  • Hüseyin Avni Vural
    • 1
  • Ali Kemal Okyay
    • 1
    • 2
  • Bülend Ortaç
    • 1
  1. 1.UNAM Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey
  2. 2.Department of Electrical and Electronics EngineeringBilkent UniversityAnkaraTurkey
  3. 3.Department of PhysicsMarmara UniversityIstanbulTurkey

Personalised recommendations