Advertisement

Ultra-long palladium nanoworms by polymer grafts

  • Stefan Bokern
  • Kerstin Volz
  • Seema Agarwal
  • Andreas GreinerEmail author
Research Paper

Abstract

Chemically and morphologically stable, non-aggregating palladium nanoworms with diameters of 2 nm and lengths of up to 10 nm with a graft-to polystyrene shell were synthesized in a straight-forward one-phase system, and proof for the mechanism of formation is presented. The synthesis has been achieved by the application of ω-2,2′-bipyridyl-polystyrene as stabilizer, which led to a “graft-to” structure of palladium nanoworms with polystyrene shell. The nanoworms have been characterized by TEM, XRD, and coupled GPC-UV/Vis measurement. It was possible to show that the formation of nanoworms proceeds by agglomeration of spherical palladium nanoparticles. This mechanism was transferred to ω-thiol-polystyrene as stabilizer, which results in either spherical nanoparticles (low ratio Pd:Polymer, <2 nm diameter) or high aspect ratio nanoworms (high ratio Pd:Polymer, up to 10 × 120 nm), proving that the formation of palladium nanoworms was not exclusive for pyridine/amine-based ligands.

Graphical abstract

In a straight-forward one-phase synthesis, palladium nanoworms with a graft-to polymer shell are synthesized by metal salt reduction. The picture shows a sample of palladium nanoworms with diameter of 10 nm and lengths of up to 120 nm, stabilized by ω-thiol-polystyrene.

Keywords

Core/shell materials Gel permeation chromatography Nanostructures Nanoparticles Palladium 

Notes

Acknowledgments

The authors thank Dr. A. Schaper and Michael Hellwig of the Center for Materials Science Marburg for technical support for TEM measurements and DFG, Germany for the financial support.

References

  1. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872CrossRefGoogle Scholar
  2. Bokern S, Getze J, Agarwal S, Greiner A (2011) Polymer grafted silver and copper nanoparticles with exceptional stability against aggregation by a high yield one-pot synthesis. Polymer 52:912–920CrossRefGoogle Scholar
  3. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  4. Evangelisti C, Panziera N, D’Alessio A, Bertinetti L, Botavina M, Vitulli G (2010) New monodispersed palladium nanoparticles by poly-(N-vinyl-2-pyrrolidone): preparation, structural study and catalytic properties. J Catal 272:246–252CrossRefGoogle Scholar
  5. Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6:1221–1231CrossRefGoogle Scholar
  6. Henderson IM, Hayward RC (2010) Synthesis of end-functionalized polystyrene by direct nucleophilic addition of polystyryllithium to bipyridine or terpyridine. Macromolecules 43:3249–3255CrossRefGoogle Scholar
  7. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744CrossRefGoogle Scholar
  8. Kharisov BI, Kharissova OV, Jose-Yacaman M (2010) Nanostructures with animal-like shapes. Ind Eng Chem Res 49:8289–8309CrossRefGoogle Scholar
  9. Kim SW, Park J, Jang Y, Chung Y, Hwang S, Hyeon T, Kim YW (2003) Synthesis of monodisperse palladium nanoparticles. Nano Lett 3:1289–1291CrossRefGoogle Scholar
  10. Kishore S, Nelson JA, Adair JH, Eklund PC (2005) Hydrogen storage in spherical and platelet palladium nonoparticles. J Alloy Compd 389:234–242CrossRefGoogle Scholar
  11. Klingelhöfer S, Heitz W, Greiner A, Oestreich S, Förster S, Antonietti M (1997) Preparation of palladium colloids in block copolymer micelles and their use for the catalysis of the Heck reaction. J Am Chem Soc 119:10116–10120CrossRefGoogle Scholar
  12. Kruger C, Agarwal S, Greiner A (2008) Stoichiometric functionalization of gold nanoparticles in solution through a free radical polymerization approach. J Am Chem Soc 130:2710–2711CrossRefGoogle Scholar
  13. Kumar C (2009) Metallic nanomaterials. Wiley VCH, WeinheimGoogle Scholar
  14. Liu L, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643CrossRefGoogle Scholar
  15. Liu X, Dai Q, Austin L, Coutts J, Knowles G, Zou J, Chen H, Huo Q (2008) A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc 130:2780–2782CrossRefGoogle Scholar
  16. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205CrossRefGoogle Scholar
  17. Nakamoto K (1960) Ultraviolet spectra and structures of 2,2′-bipyridine and 2,2′,2″-terpyridine in aqueous solution. J Phys Chem 64:1420–1425CrossRefGoogle Scholar
  18. Naoe K, Petit C, Pileni MP (2007) From wormlike to spherical palladium nanocrystals: digestive ripening. J Phys Chem C 111:16249–16254CrossRefGoogle Scholar
  19. Naoe K, Petit C, Pileni MP (2008) Use of revers micelles to make either spherical or worm-like palladium nanocrystals: influence of stabilizing agent on nanocrystal shape. Langmuir 24:2792–2798CrossRefGoogle Scholar
  20. Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: suzuki reaction catalyzed by PVP-palladium nanoparticles. J Am Chem Soc 125:8340–8347CrossRefGoogle Scholar
  21. Ogasawara S, Kato S (2010) Palladium nanoparticles captured in microporous polymers: a tailor-made catalyst for heterogeneous carbon cross-coupling reactions. J Am Chem Soc 132:4608–4613CrossRefGoogle Scholar
  22. Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove M-J (2001) Ligand-stabilized ruthenium nanoparticles: synthesis, organization, and dynamics. J Am Chem Soc 123:7584–7593CrossRefGoogle Scholar
  23. Papp S, Dékány I (2006) Nucleation and growth of palladium nanoparticles stabilized by polymers and layer silicates. Colloid Polym Sci 284:1049–1056CrossRefGoogle Scholar
  24. Quiros I, Yamada M, Kubo K, Mizutani J, Kurihara M, Nishihara H (2002) Preparation of alkanothiolate-protected palladium nanoparticles and their size dependence on synthetic conditions. Langmuir 18:1413–1418CrossRefGoogle Scholar
  25. Semagina N, Joannet E, Parra S, Sulman E, Renken A, Kiwi-Minsker L (2005) Palladium nanoparticles stabilized in block-copolymer micelles for highly selective 2-butyne-1,4-diol partial hydrogenation. Appl Catal A Gen 280:141–147CrossRefGoogle Scholar
  26. Song Y, Sun Q, Zhang T, Jin P, Han L (2010) Synthesis of worm and chain-like nanoparticles by a microfluidic reactor process. J Nanopart Res 12:2689–2697CrossRefGoogle Scholar
  27. Sperling RA, Liedl T, Duhr S, Kudera S, Zanella M, Lin C-AJ, Chang WH, Braun D, Parak WJ (2007) Size determination of (bio)conjugated water-soluble colloidal nanoparticles: a comparision of different techniques. J Phys Chem C 111:11552–11559CrossRefGoogle Scholar
  28. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179CrossRefGoogle Scholar
  29. Tamura M, Fujihara H (2003) Chiral bisphosphine BINAP-stabilized gold and palladium nanoparticles with small size and their palladium nanoparticle-catalyzed asymmetric reaction. J Am Chem Soc 125:15742–15743CrossRefGoogle Scholar
  30. Vogt AP, Sumerlin BS (2006) An efficient route to macromonomers via ATRP and click chemistry. Macromolecules 39:5286–5292CrossRefGoogle Scholar
  31. Yang ZL, Li Y, Li ZP, Wu DY, Kang JY, Xu HX, Sun MT (2009) Surface enhanced Raman scattering of pyridine adsorbed an AU&Pd core/shell nanoparticles. J Chem Phys 130:234705CrossRefGoogle Scholar
  32. Yu J, Liu RYF, Poon B, Nazarenko S, Koloski T, Vargo T, Hiltner A, Baer E (2004) Polymers with palladium nanoparticles as active membrane materials. J Appl Polym Sci 92:749–756CrossRefGoogle Scholar
  33. Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331:251–262CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Stefan Bokern
    • 1
  • Kerstin Volz
    • 2
  • Seema Agarwal
    • 1
  • Andreas Greiner
    • 1
    Email author
  1. 1.Fachbereich Chemie und Wissenschaftliches Zentrum für MaterialwissenschaftenPhilipps-Universität MarburgMarburgGermany
  2. 2.Wissenschaftliches Zentrum für MaterialwissenschaftenPhilipps-Universität MarburgMarburgGermany

Personalised recommendations