A facile, coverage controlled deposition of Au nanoparticles on ZnO nanorods by sonochemical reaction for enhancement of photocatalytic activity

  • Jaehyun Kim
  • Kijung YongEmail author
Research Paper


This study reports the synthesis of Au/ZnO heterostructured nanorods by a facile sonochemical method and their improved photocatalytic activity. A simple and fast deposition of gold nanoparticles on ZnO nanorods was performed without any surfactants or additives. Through various analyses (SEM, XRD, TEM, and EELS), we confirmed the formation of a highly crystalline Au/ZnO nanostructure; several tens of nanometer-sized polycrystalline Au nanoparticles were uniformly deposited on the surface of ZnO nanorods. The size and the density of Au nanoparticles could be controlled by the modulation of the concentration of the gold ion precursor and the solvent compositions. Formation of smaller Au nanoparticles with a lower surface coverage was induced at a lower concentration of the gold ion source with a solvent composition ratio of 1:4 of D.I. water to ethanol. Compared with bare ZnO nanorods, Au/ZnO heterostructures exhibited enhanced photocatalytic activity in the photodegradation of an organic dye, which is caused by the Au nanoparticles acting as an electron sink and lowering the local work function.


Nanowire ZnO Nanoparticle 



This work was supported by grants from the National Research Foundation (NRF2010-0009545, NRF2010-0015975), 2011 Global Research Network Program (220-2011-1-C00033) and by the Korean Research Foundation Grants funded by the Korean Government (MOEHRD) (KRF-2008-005-J00501).


  1. Ahmad M, Yingying S, Nisar A, Sun H, Shen W, Wie M, Zhu J (2011) Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J Mater Chem 21:7723–7729. doi: 10.1039/C1JM10720H CrossRefGoogle Scholar
  2. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059. doi: 10.1002/adma.200904093 CrossRefGoogle Scholar
  3. Chen ZH, Tang YB, Liu CP, Leung YH, Yuan GD, Chen LM, Wang YQ, Bello I, Zapien JA, Zhang WJ, Lee CS, Lee ST (2009) Vertically aligned ZnO nanorod arrays sensitized with gold nanoparticles for Schottky barrier photovoltaic cells. J Phys Chem C 113:13433–13437. doi: 10.1021/jp903153w CrossRefGoogle Scholar
  4. Chen L, Luo L, Chen Z, Zhang M, Zapien JA, Lee CS, Lee ST (2010) ZnO/Au composite nanoarrays as substrates for surface-enhanced raman scattering detection. J Phys Chem C 114:93–100. doi: 10.1021/jp908423v CrossRefGoogle Scholar
  5. Costi R, Saunders AE, Elmalem E, Salant A, Banin U (2008) Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. Nano Lett 8:637–641. doi: 10.1021/nl0730514 CrossRefGoogle Scholar
  6. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals progress and problems. J Photochem Photobiol C 9:1–12. doi: 10.1016/j.jphotochemrev.2007.12.003 CrossRefGoogle Scholar
  7. Goto H, Hanada Y, Ohno T, Matsum M (2004) Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 particles. J Catal 225:223–229. doi: 10.1016/j.jcat.2004.04.001 CrossRefGoogle Scholar
  8. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166. doi: 10.1016/S0920-5861(96)00208-8 CrossRefGoogle Scholar
  9. Hayashi T, Tanaka K, Haruta M (1998) Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J Catal 178:566–575. doi: 10.1006/jcat.1998.2157 CrossRefGoogle Scholar
  10. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899. doi: 10.1126/science.1060367 CrossRefGoogle Scholar
  11. Kim J, Yong K (2011) Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing. J Phys Chem C 115:7218–7224. doi: 10.1021/jp110129f CrossRefGoogle Scholar
  12. Kind H, Yan HQ, Messer B, Law M, Yang PD (2002) Nanowire ultraviolet photodetectors and optical switches. Adv Mater 14:158–160. doi: 10.1002/1521-4095(20020116 CrossRefGoogle Scholar
  13. Lee MK, Tu HF (2008) Au-ZnO and Pt-ZnO films prepared by electrodeposition as photocatalysts. J Electrochem Soc 155:D758–D762. doi: 10.1149/1.2990719 CrossRefGoogle Scholar
  14. Lee MK, Kim TG, Kim W, Sung YM (2008) Surface Plasmon resonance (SPR) electron and energy transfer in noble metal-zinc oxide composite nanocrystals. J Phys Chem C 112:10079–10082. doi: 10.1021/jp8018809 CrossRefGoogle Scholar
  15. Li H, Liu E, Chan FYF, Lu Z, Chen R (2011) Fabrication of ordered flower-like ZnO nanostructures by a microwave and ultrasonic combined technique and their enhanced photocatlytic activity. Mater Lett 65:3440–3443. doi: 10.1016/j.matlet.2011.07.049 CrossRefGoogle Scholar
  16. Lin H, Liao S, Hung S (2005) The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J Photochem Photobiol A 174:82Google Scholar
  17. Liu CH, Zapien JA, Yao Y, Meng ZM, Lee CS, Fan SS, Lifshitz Y, Lee ST (2003) High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Adv Mater 15:838–841. doi: 10.1002/adma.200304430 CrossRefGoogle Scholar
  18. Liu Y, Zhong M, Shan G, Li Y, Huang B, Yang G (2008) Biocompatible ZnO/Au nanocomposites for ultrasensitive DNA detection using resonance raman scattering. J Phys Chem B 112:6484–6489. doi: 10.1021/jp710399d CrossRefGoogle Scholar
  19. Liu J, Guo Z, Meng F, Jia Y, Luo T, Li M, Liu J (2009) Novel single-crystalline hierarchical structured ZnO nanorods fabricated via a wet-chemical route: combine high gas sensing performance with enhanced optical properties. Cryst Growth Design 9:1716–1722. doi: 10.1021/cg8006298 CrossRefGoogle Scholar
  20. Liu K, Sakurai M, Liao M, Aono M (2010) Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles. J Phys Chem C 114:19835–19839. doi: 10.1021/jp108320j CrossRefGoogle Scholar
  21. Lu Y, Lin Y, Wang D, Wang L, Xie T, Jiang T (2011) Surface charge transfer properties of high-performance Ag-decorated ZnO photocatalysts. J Phys D Appl Phys 44:315502. doi: 10.1088/0022-3727/44/31/315502 CrossRefGoogle Scholar
  22. Min J, Liang X, Wang B, Wang L, Zhao Y, Shi W, Xia Y (2011) The sensitivity and dynamic response of field ionization gas sensor based on ZnO nanorods. J Nanopart Res 13:5171–5176. doi: 10.1007/s11051-011-0500-2 CrossRefGoogle Scholar
  23. Pawinrat P, Mekasuwandumrong O (2009) Panparanot J Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catal Commun 10:1380–1385. doi: 10.1016/j.catcom.2009.03.002 CrossRefGoogle Scholar
  24. Santhaveesuka T, Wongratanaphisana D, Choopun S (2010) Enhancement of sensor response by TiO2 mixing and Au coating on ZnO tetrapod sensor. Sen Actuator B 147:502–507. doi: 10.1016/j.snb.2010.03.081 CrossRefGoogle Scholar
  25. Shan G, Wang S, Fei X, Liu Y, Yang G (2009) Heterostructured ZnO/Au nanoparticles-based resonant Raman scattering for protein detection. J Phys Chem B 113:1468–1472. doi: 10.1021/jp8046032 CrossRefGoogle Scholar
  26. Singh N, Gupta RK, Lee PS (2011) Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. ACS Appl Mat Interface 3:2246–2252. doi: 10.1021/am101259t CrossRefGoogle Scholar
  27. Subramanian V, Wolf EE, Kamat PV (2003) Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration. J Phys Chem B 107:7479–7485. doi: 10.1021/jp0275037 CrossRefGoogle Scholar
  28. Subramanian W, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermilevel equilibration. J Am Chem Soc 126:4943–4950. doi: 10.1021/ja0315199 CrossRefGoogle Scholar
  29. Sun L, Zhao D, Song Z, Shan C, Zhang Z, Li B, Shen D (2011) Gold nanoparticles modified ZnO nanorods with improved photocatalystic activity. J Colloid Interface Sci 363:175–181. doi: 10.1016/j.jcis.2011.07.005 CrossRefGoogle Scholar
  30. Szabo-Bardos E, Czili H, Horvath A (2003) Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface. J Photochem Photobiol A 154:195–201. doi: 10.1016/S1010-6030(02)00330-1 CrossRefGoogle Scholar
  31. Wan Q, Wang TH, Zhao JC (2005) Enhanced photocatalytic activity of ZnO nanotetrapods. Appl Phys Lett 87:083105-1–083105-3. doi: 10.1063/1.2034092 Google Scholar
  32. Wang GY, Zhang WX, Lian HL, Jiang DZ, Wu TH (2003) Effect of calcination temperatures and precipitant on the catalytic performance of Au/ZnO catalysts for CO oxidation at ambient temperature and in humid circumstances. Appl Catal A Gen 239:1–10. doi: 10.1016/S0926-860X(02)00098-4 CrossRefGoogle Scholar
  33. Wang X, Kong X, Yu Y, Zhang H (2007) Synthesis and characterization of water soluble and bifunctional ZnO–Au nanocomposites. J Phys Chem C 111:3836–3841. doi: 10.1021/jp064118z CrossRefGoogle Scholar
  34. Wang Y, Li X, Lu G, Quan X, Chen G (2008) Highly oriented 1-D ZnO nanorod arrays on zinc foil: direct growth from substrate, optical properties and photocatalytic activities. J Phys Chem C 112:7332–7336. doi: 10.1021/jp7113175 CrossRefGoogle Scholar
  35. Wang L, Wang J, Zhang S, Sun Y, Zhu X, Cao Y, Wang X, Zhang H, Song D (2009a) Surface plasmon resonance biosensor based water-soluble ZnO-Au nanocomposites. Anal Chim Acta 653:109–115. doi: 10.1016/j.aca.2009.09.001 CrossRefGoogle Scholar
  36. Wang Q, Geng B, Wang S (2009b) ZnO/Au hybrid nanoarchitectures: wet-chemical synthesis and structurally enhanced photocatalytic performance. Environ Sci Technol 43:8968–8973. doi: 10.1021/es902568h CrossRefGoogle Scholar
  37. Wu J, Tseng C (2006) Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl Catal B 66:51–57. doi: 10.1016/j.apcatb.2006.02.013 CrossRefGoogle Scholar
  38. Zeng Y, Zhang T, Wang L, Wang R, Fu W, Yang H (2009) Synthesis and ethanol sensing properties of self-assembled monocrystalline ZnO nanorod bundles by poly(ethylene glycol)-assisted hydrothermal process. J Phys Chem C 113:3442–3448. doi: 10.1021/jp8082166 CrossRefGoogle Scholar
  39. Zhang W, Lu Y, Zhang T, Xu W, Zhang M, Yu S (2008) Controlled synthesis and biocompatibility of water-soluble ZnO nanorods/Au nanocomposites with tunable UV and visible emission intensity. J Phys Chem C 112:19872–19877. doi: 10.1021/jp804547e CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Surface Chemistry Laboratory of Electronic Materials, Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)PohangKorea

Personalised recommendations