Skip to main content
Log in

A facile, coverage controlled deposition of Au nanoparticles on ZnO nanorods by sonochemical reaction for enhancement of photocatalytic activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study reports the synthesis of Au/ZnO heterostructured nanorods by a facile sonochemical method and their improved photocatalytic activity. A simple and fast deposition of gold nanoparticles on ZnO nanorods was performed without any surfactants or additives. Through various analyses (SEM, XRD, TEM, and EELS), we confirmed the formation of a highly crystalline Au/ZnO nanostructure; several tens of nanometer-sized polycrystalline Au nanoparticles were uniformly deposited on the surface of ZnO nanorods. The size and the density of Au nanoparticles could be controlled by the modulation of the concentration of the gold ion precursor and the solvent compositions. Formation of smaller Au nanoparticles with a lower surface coverage was induced at a lower concentration of the gold ion source with a solvent composition ratio of 1:4 of D.I. water to ethanol. Compared with bare ZnO nanorods, Au/ZnO heterostructures exhibited enhanced photocatalytic activity in the photodegradation of an organic dye, which is caused by the Au nanoparticles acting as an electron sink and lowering the local work function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad M, Yingying S, Nisar A, Sun H, Shen W, Wie M, Zhu J (2011) Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J Mater Chem 21:7723–7729. doi:10.1039/C1JM10720H

    Article  CAS  Google Scholar 

  • Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059. doi:10.1002/adma.200904093

    Article  CAS  Google Scholar 

  • Chen ZH, Tang YB, Liu CP, Leung YH, Yuan GD, Chen LM, Wang YQ, Bello I, Zapien JA, Zhang WJ, Lee CS, Lee ST (2009) Vertically aligned ZnO nanorod arrays sensitized with gold nanoparticles for Schottky barrier photovoltaic cells. J Phys Chem C 113:13433–13437. doi:10.1021/jp903153w

    Article  CAS  Google Scholar 

  • Chen L, Luo L, Chen Z, Zhang M, Zapien JA, Lee CS, Lee ST (2010) ZnO/Au composite nanoarrays as substrates for surface-enhanced raman scattering detection. J Phys Chem C 114:93–100. doi:10.1021/jp908423v

    Article  CAS  Google Scholar 

  • Costi R, Saunders AE, Elmalem E, Salant A, Banin U (2008) Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. Nano Lett 8:637–641. doi:10.1021/nl0730514

    Article  CAS  Google Scholar 

  • Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals progress and problems. J Photochem Photobiol C 9:1–12. doi:10.1016/j.jphotochemrev.2007.12.003

    Article  CAS  Google Scholar 

  • Goto H, Hanada Y, Ohno T, Matsum M (2004) Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 particles. J Catal 225:223–229. doi:10.1016/j.jcat.2004.04.001

    Article  CAS  Google Scholar 

  • Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166. doi:10.1016/S0920-5861(96)00208-8

    Article  CAS  Google Scholar 

  • Hayashi T, Tanaka K, Haruta M (1998) Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J Catal 178:566–575. doi:10.1006/jcat.1998.2157

    Article  CAS  Google Scholar 

  • Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899. doi:10.1126/science.1060367

    Article  CAS  Google Scholar 

  • Kim J, Yong K (2011) Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing. J Phys Chem C 115:7218–7224. doi:10.1021/jp110129f

    Article  CAS  Google Scholar 

  • Kind H, Yan HQ, Messer B, Law M, Yang PD (2002) Nanowire ultraviolet photodetectors and optical switches. Adv Mater 14:158–160. doi:10.1002/1521-4095(20020116

    Article  CAS  Google Scholar 

  • Lee MK, Tu HF (2008) Au-ZnO and Pt-ZnO films prepared by electrodeposition as photocatalysts. J Electrochem Soc 155:D758–D762. doi:10.1149/1.2990719

    Article  CAS  Google Scholar 

  • Lee MK, Kim TG, Kim W, Sung YM (2008) Surface Plasmon resonance (SPR) electron and energy transfer in noble metal-zinc oxide composite nanocrystals. J Phys Chem C 112:10079–10082. doi:10.1021/jp8018809

    Article  CAS  Google Scholar 

  • Li H, Liu E, Chan FYF, Lu Z, Chen R (2011) Fabrication of ordered flower-like ZnO nanostructures by a microwave and ultrasonic combined technique and their enhanced photocatlytic activity. Mater Lett 65:3440–3443. doi:10.1016/j.matlet.2011.07.049

    Article  CAS  Google Scholar 

  • Lin H, Liao S, Hung S (2005) The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J Photochem Photobiol A 174:82

    Google Scholar 

  • Liu CH, Zapien JA, Yao Y, Meng ZM, Lee CS, Fan SS, Lifshitz Y, Lee ST (2003) High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Adv Mater 15:838–841. doi:10.1002/adma.200304430

    Article  CAS  Google Scholar 

  • Liu Y, Zhong M, Shan G, Li Y, Huang B, Yang G (2008) Biocompatible ZnO/Au nanocomposites for ultrasensitive DNA detection using resonance raman scattering. J Phys Chem B 112:6484–6489. doi:10.1021/jp710399d

    Article  CAS  Google Scholar 

  • Liu J, Guo Z, Meng F, Jia Y, Luo T, Li M, Liu J (2009) Novel single-crystalline hierarchical structured ZnO nanorods fabricated via a wet-chemical route: combine high gas sensing performance with enhanced optical properties. Cryst Growth Design 9:1716–1722. doi:10.1021/cg8006298

    Article  CAS  Google Scholar 

  • Liu K, Sakurai M, Liao M, Aono M (2010) Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles. J Phys Chem C 114:19835–19839. doi:10.1021/jp108320j

    Article  CAS  Google Scholar 

  • Lu Y, Lin Y, Wang D, Wang L, Xie T, Jiang T (2011) Surface charge transfer properties of high-performance Ag-decorated ZnO photocatalysts. J Phys D Appl Phys 44:315502. doi:10.1088/0022-3727/44/31/315502

    Article  Google Scholar 

  • Min J, Liang X, Wang B, Wang L, Zhao Y, Shi W, Xia Y (2011) The sensitivity and dynamic response of field ionization gas sensor based on ZnO nanorods. J Nanopart Res 13:5171–5176. doi:10.1007/s11051-011-0500-2

    Article  CAS  Google Scholar 

  • Pawinrat P, Mekasuwandumrong O (2009) Panparanot J Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catal Commun 10:1380–1385. doi:10.1016/j.catcom.2009.03.002

    Article  CAS  Google Scholar 

  • Santhaveesuka T, Wongratanaphisana D, Choopun S (2010) Enhancement of sensor response by TiO2 mixing and Au coating on ZnO tetrapod sensor. Sen Actuator B 147:502–507. doi:10.1016/j.snb.2010.03.081

    Article  Google Scholar 

  • Shan G, Wang S, Fei X, Liu Y, Yang G (2009) Heterostructured ZnO/Au nanoparticles-based resonant Raman scattering for protein detection. J Phys Chem B 113:1468–1472. doi:10.1021/jp8046032

    Article  CAS  Google Scholar 

  • Singh N, Gupta RK, Lee PS (2011) Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. ACS Appl Mat Interface 3:2246–2252. doi:10.1021/am101259t

    Article  CAS  Google Scholar 

  • Subramanian V, Wolf EE, Kamat PV (2003) Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration. J Phys Chem B 107:7479–7485. doi:10.1021/jp0275037

    Article  CAS  Google Scholar 

  • Subramanian W, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermilevel equilibration. J Am Chem Soc 126:4943–4950. doi:10.1021/ja0315199

    Article  CAS  Google Scholar 

  • Sun L, Zhao D, Song Z, Shan C, Zhang Z, Li B, Shen D (2011) Gold nanoparticles modified ZnO nanorods with improved photocatalystic activity. J Colloid Interface Sci 363:175–181. doi:10.1016/j.jcis.2011.07.005

    Article  CAS  Google Scholar 

  • Szabo-Bardos E, Czili H, Horvath A (2003) Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface. J Photochem Photobiol A 154:195–201. doi:10.1016/S1010-6030(02)00330-1

    Article  CAS  Google Scholar 

  • Wan Q, Wang TH, Zhao JC (2005) Enhanced photocatalytic activity of ZnO nanotetrapods. Appl Phys Lett 87:083105-1–083105-3. doi:10.1063/1.2034092

    Google Scholar 

  • Wang GY, Zhang WX, Lian HL, Jiang DZ, Wu TH (2003) Effect of calcination temperatures and precipitant on the catalytic performance of Au/ZnO catalysts for CO oxidation at ambient temperature and in humid circumstances. Appl Catal A Gen 239:1–10. doi:10.1016/S0926-860X(02)00098-4

    Article  CAS  Google Scholar 

  • Wang X, Kong X, Yu Y, Zhang H (2007) Synthesis and characterization of water soluble and bifunctional ZnO–Au nanocomposites. J Phys Chem C 111:3836–3841. doi:10.1021/jp064118z

    Article  CAS  Google Scholar 

  • Wang Y, Li X, Lu G, Quan X, Chen G (2008) Highly oriented 1-D ZnO nanorod arrays on zinc foil: direct growth from substrate, optical properties and photocatalytic activities. J Phys Chem C 112:7332–7336. doi:10.1021/jp7113175

    Article  CAS  Google Scholar 

  • Wang L, Wang J, Zhang S, Sun Y, Zhu X, Cao Y, Wang X, Zhang H, Song D (2009a) Surface plasmon resonance biosensor based water-soluble ZnO-Au nanocomposites. Anal Chim Acta 653:109–115. doi:10.1016/j.aca.2009.09.001

    Article  CAS  Google Scholar 

  • Wang Q, Geng B, Wang S (2009b) ZnO/Au hybrid nanoarchitectures: wet-chemical synthesis and structurally enhanced photocatalytic performance. Environ Sci Technol 43:8968–8973. doi:10.1021/es902568h

    Article  CAS  Google Scholar 

  • Wu J, Tseng C (2006) Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl Catal B 66:51–57. doi:10.1016/j.apcatb.2006.02.013

    Article  CAS  Google Scholar 

  • Zeng Y, Zhang T, Wang L, Wang R, Fu W, Yang H (2009) Synthesis and ethanol sensing properties of self-assembled monocrystalline ZnO nanorod bundles by poly(ethylene glycol)-assisted hydrothermal process. J Phys Chem C 113:3442–3448. doi:10.1021/jp8082166

    Article  CAS  Google Scholar 

  • Zhang W, Lu Y, Zhang T, Xu W, Zhang M, Yu S (2008) Controlled synthesis and biocompatibility of water-soluble ZnO nanorods/Au nanocomposites with tunable UV and visible emission intensity. J Phys Chem C 112:19872–19877. doi:10.1021/jp804547e

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Research Foundation (NRF2010-0009545, NRF2010-0015975), 2011 Global Research Network Program (220-2011-1-C00033) and by the Korean Research Foundation Grants funded by the Korean Government (MOEHRD) (KRF-2008-005-J00501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kijung Yong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Yong, K. A facile, coverage controlled deposition of Au nanoparticles on ZnO nanorods by sonochemical reaction for enhancement of photocatalytic activity. J Nanopart Res 14, 1033 (2012). https://doi.org/10.1007/s11051-012-1033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1033-z

Keywords

Navigation