Versatile and biomass synthesis of iron-based nanoparticles supported on carbon matrix with high iron content and tunable reactivity

  • Dongmao Zhang
  • Sheldon Q. Shi
  • Charles U. PittmanJr.
  • Dongping Jiang
  • Wen Che
  • Zheng Gai
  • Jane Y. Howe
  • Karren L. More
  • Arockiasamy Antonyraj
Research Paper

Abstract

Iron-based nanoparticles supported on carbon (FeNPs@C) have enormous potential for environmental applications. Reported is a biomass-based method for FeNP@C synthesis that involves pyrolysis of bleached wood fiber pre-mixed with Fe3O4 nanoparticles. This method allows synthesis of iron-based nanoparticles with tunable chemical reactivity by changing the pyrolysis temperature. The FeNP@C synthesized at a pyrolysis temperature of 500 °C (FeNP@C-500) reacts violently (pyrophoric) when exposed to air, while FeNP@C prepared at 800 °C (FeNP@C-800) remains stable in ambient condition for at least 3 months. The FeNPs in FeNP@C-800 are mostly below 50 nm in diameter and are surrounded by carbon. The immediate carbon layer (within 5–15 nm radius) on the FeNPs is graphitized. Proof-of-concept environmental applications of FeNPs@C-800 were demonstrated by Rhodamine 6G and arsenate (V) removal from water. This biomass-based method provides an effective way for iron-based nanoparticle fabrication and biomass utilization.

Keywords

Iron nanoparticle Elemental iron Iron oxide nanoparticle Cellulose fiber Biomass 

Supplementary material

11051_2012_1023_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2705 kb)

References

  1. Amara D, Grinblat J, Margel S (2010) Synthesis of magnetic iron and iron oxide micrometre-sized composite particles of narrow size distribution by annealing iron salts entrapped within uniform porous poly(divinylbenzene) microspheres. J Mater Chem 20(10):1899–1906CrossRefGoogle Scholar
  2. Annadurai G, Juang R-S, Lee D-J (2001) Adsorption of rhodamine 6G from aqueous solutions on activated carbon. J Environ Sci Health A Tox Hazard Subst Environ Eng 36(5):715–725CrossRefGoogle Scholar
  3. Barnes RJ, Riba O, Gardner MN, Singer AC, Jackman SA, Thompson IP (2010) Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere 80(5):554–562CrossRefGoogle Scholar
  4. Han YC, Cha HG, Kim CW, Kim YH, Kang YS (2007) Synthesis of highly magnetized iron nanoparticles by a solventless thermal decomposition method. J Phys Chem C 111(17):6275–6280CrossRefGoogle Scholar
  5. Harris PJF (2001) Non-graphitizing carbons. In: Buschow KHJ, Robert WC, Merton CF, Bernard I, Edward JK, Subhash M, Patrick V (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 6197–6202CrossRefGoogle Scholar
  6. He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41(17):6216–6221CrossRefGoogle Scholar
  7. Jeanne EP et al (2008) Synthesis and characterization of magnetically active carbon nanofiber/iron oxide composites with hierarchical pore structures. Nanotechnology 19(45):455612CrossRefGoogle Scholar
  8. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298CrossRefGoogle Scholar
  9. Kanel SR, Grenèche J-M, Choi H (2006) Arsenic(V) removal from Groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050CrossRefGoogle Scholar
  10. Liu Z, Zhang F-S (2010) Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs. Bioresour Technol 101(7):2562–2564CrossRefGoogle Scholar
  11. Liu Y, Ren Z, Wei Y, Jiang B, Feng S, Zhang L, Zhang W, Fu H (2010) Synthesis and applications of graphite carbon sphere with uniformly distributed magnetic Fe3O4 nanoparticles (MGCSs) and MGCS@Ag, MGCS@TiO2. J Mater Chem 20(23):4802–4808CrossRefGoogle Scholar
  12. Lo CK, Xiao D, Choi MMF (2007) Homocysteine-protected gold-coated magnetic nanoparticles: synthesis and characterisation. J Mater Chem 17(23):2418–2427CrossRefGoogle Scholar
  13. Magalhães F, Pereira M, Fabris J, Costa Bottrel S, Amaya A, Mogliazza N, Lago R (2010) Hematite reaction with tar to produce carbon/iron composites for the reduction of Cr(VI) contaminant. Hyperfine Interact 195(1):43–48CrossRefGoogle Scholar
  14. Manning BA, Hunt ML, Amrhein C, Yarmoff JA (2002) Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environ Sci Technol 36(24):5455–5461CrossRefGoogle Scholar
  15. Marsh H, Crawford D, Taylor DW (1983) Catalytic graphitization by iron of isotropic carbon from polyfurfuryl alcohol, 725–1090 K. A high resolution electron microscope study. Carbon 21(1):81–87CrossRefGoogle Scholar
  16. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2004) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230CrossRefGoogle Scholar
  17. Oliveira LCA, Fabris JD, Rios RRVA, Mussel WN, Lago RM (2004) Fe3-xMnxO4 catalysts: phase transformations and carbon monoxide oxidation. Appl Catal A 259(2):253–259CrossRefGoogle Scholar
  18. Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2006) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290CrossRefGoogle Scholar
  19. Phenrat T, Song JE, Cisneros CM, Schoenfelder DP, Tilton RD, Lowry GV (2010) Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. Environ Sci Technol 44(12):4531–4538CrossRefGoogle Scholar
  20. Phillips DH, Nooten TV, Bastiaens L, Russell MI, Dickson K, Plant S, Ahad JME, Newton T, Elliot T, Kalin RM (2010) Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environ Sci Technol 44(10):3861–3869CrossRefGoogle Scholar
  21. Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J-M (2011) Magnetically recoverable nanocatalysts. Chem Rev 111(5):3036–3075CrossRefGoogle Scholar
  22. Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569CrossRefGoogle Scholar
  23. Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193CrossRefGoogle Scholar
  24. Schwickardi M, Olejnik S, Salabas E-L, Schmidt W, Schuth F (2006) Scalable synthesis of activated carbon with superparamagnetic properties. Chem Commun (38):3987–3989Google Scholar
  25. Sevilla M, Fuertes AB (2010) Graphitic carbon nanostructures from cellulose. Chem Phys Lett 490(1–3):63–68CrossRefGoogle Scholar
  26. Siau JF (1984) Transport processes in wood. Springer, BerlinCrossRefGoogle Scholar
  27. Singh R, Misra V, Singh R (2011) Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J Nanopart Res 13(9):4063–4073CrossRefGoogle Scholar
  28. Tiehm A, Kraßnitzer S, Koltypin Y, Gedanken A (2009) Chloroethene dehalogenation with ultrasonically produced air-stable nano iron. Ultrason Sonochem 16(5):617–621CrossRefGoogle Scholar
  29. Wang C-B, Zhang W-x (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156CrossRefGoogle Scholar
  30. Xu J, Gao N, Tang Y, Deng Y, Sui M (2010) Perchlorate removal using granular activated carbon supported iron compounds: synthesis, characterization and reactivity. J Environ Sci 22(11):1807–1813CrossRefGoogle Scholar
  31. Yu S, Chow GM (2005) Synthesis, structural, magnetic, and cytotoxic properties of iron oxide coated iron/iron-carbide nanocomposite particles. J Appl Phys 98(11):114306CrossRefGoogle Scholar
  32. Zhang W-x (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3):323–332CrossRefGoogle Scholar
  33. Zhang Z, Blom DA, Gai Z, Thompson JR, Shen J, Dai S (2003) High-yield solvothermal formation of magnetic CoPt alloy nanowires. J Am Chem Soc 125(25):7528–7529CrossRefGoogle Scholar
  34. Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172(2–3):1591–1596CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dongmao Zhang
    • 1
  • Sheldon Q. Shi
    • 2
  • Charles U. PittmanJr.
    • 1
  • Dongping Jiang
    • 1
  • Wen Che
    • 2
  • Zheng Gai
    • 3
  • Jane Y. Howe
    • 3
  • Karren L. More
    • 3
  • Arockiasamy Antonyraj
    • 4
  1. 1.Department of ChemistryMississippi State UniversityMississippi StateUSA
  2. 2.Mechanical and Energy EngineeringUniversity of North TexasDentonUSA
  3. 3.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Center for Advanced Vehicular SystemsMississippi State UniversityMississippi StateUSA

Personalised recommendations