Growth of raspberry-, prism- and flower-like ZnO particles using template-free low-temperature hydrothermal method and their application as humidity sensors

  • Edit Pál
  • Viktória Hornok
  • Robert Kun
  • Vladimir Chernyshev
  • Torben Seemann
  • Imre Dékány
  • Matthias Busse
Research Paper


Zinc oxide particles with different morphologies were prepared by hydrothermal method at 60–90 °C. The structure formation was controlled by the addition rate and temperature of hydrolyzing agent, while the particles size (10 nm–2.5 μm) was influenced by the preparation (hydrothermal) temperature. Scanning electron microscopy studies showed that raspberry-, prism- and flower-like ZnO particles were prepared, whose average size decreased with increasing reaction temperature. X-ray diffraction investigations confirmed that ZnO particles with hexagonal crystal structure formed in all syntheses. The raspberry-, prism- and flower-like ZnO particles showed a weak UV-emission in the range of 390–395 nm and strong visible emission with a maximum at 586, 593 and 598 nm, respectively. Morphology effect on electrical and water vapour sensing properties of ZnO samples was investigated by impedance spectroscopy and quartz crystal microbalance, respectively. The absolute impedance of raspberry-, prism- and flower-like ZnO particles was found to be strong dependent on the morphology. Space-charge-limited conductivity transport mechanism was proved by the oscillatory behaviour of impedance. Humidity sensor tests also revealed morphology and specific surface area dependency on the sensitivity and water vapour adsorption property.


ZnO particles Hydrothermal method Photoluminescence Impedance spectroscopy Space-charge-limited current QCM 


  1. Abyaneh MK, Jafarkahni S, Gregoratti L, Kulkani S (2011) Spectromicroscopy and photoluminescence analysis of prickly ZnO nanostructures. J Nanopart Res 13:1311–1318. doi:10.1007/s11051-010-0125-x CrossRefGoogle Scholar
  2. Bilger HR, Lee DH, Nicolet MA (1968) Noise and equivalent circuit of double injection. J Appl Phys 39:5913–5918CrossRefGoogle Scholar
  3. Chang SP, Chang SJ, Lu CY, Li MJ, Hsu CL, Chiou YZ, Hsueh TJ, Chen IC (2010) A ZnO nanowire-based humidity sensor. Superlattices Microstruct 47:772–778. doi:10.1016/j.spmi.2010.03.006 CrossRefGoogle Scholar
  4. Chen LJ, Chuang YJ (2012) Hydrothermal synthesis and characterization of hexagonal zinc oxide nanorods with a hexamethylenetetramine (HMTA) template-assisted at a low temperature. Mater Lett 68:460–462. doi:10.1016/j.matlet.2011.11.005 CrossRefGoogle Scholar
  5. Chen M, Wang Z, Dongmei H, Gu F, Guo G (2011) High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials. Sens Actuators B 157:565–574. doi:10.1016/j.snb.2011.05.023 CrossRefGoogle Scholar
  6. Chittofrati A, Matijević E (1990) Uniform particles of zinc oxide of different morphologies. Colloids Surf 48:65–78CrossRefGoogle Scholar
  7. Chou CY, Huang JS, Wu CH, Lee CY, Lin CF (2009) Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorods hybrid solar cells. Sol Energy Mater Sol Cells 93:1608–1612. doi:10.1016/j.solmat.2009.04.016 CrossRefGoogle Scholar
  8. Erol A, Okur S, Comba B, Mermer Ö, Arikan MC (2010) Humidity sensing properties of ZnO nanoparticles synthesized by sol–gel process. Sens Actuators B 145:174–180. doi:10.1016/j.snb.2009.11.051 CrossRefGoogle Scholar
  9. Fujihara S, Naito H, Kimura T (2001) Visible photoluminescence of ZnO nanoparticles dispersed in highly transparent MgF thin-films via sol–gel process. Thin Solid Films 389:227–232CrossRefGoogle Scholar
  10. Gao YJ, Zhang WC, Wu XL, Xia Y, Huang GS, Xu LL, Shen JC, Siu GG, Chu PK (2008) Hydrothermal self-assembling of ZnO nanorods into sphere-like superstructures and their optical characteristics. Appl Surf Sci 255:1982–1987. doi:10.1016/j.apsusc.2008.06.137 CrossRefGoogle Scholar
  11. Halawy SA, Mohamed MA (1995) The effect of different ZnO precursors on the catalytic decomposition of ethanol. J Mol Catal A 98:L63–L68CrossRefGoogle Scholar
  12. Hammad TM, Salem JK (2011) Synthesis and characterization of Mg-doped ZnO hollow spheres. J Nanopart Res 13:2205–2212. doi:10.1007/s11051-010-9978-2 CrossRefGoogle Scholar
  13. Huang P, Zhang X, Wei J, Feng B (2010) ZnO hierarchical structures synthesized via hydrothermal method and their photoluminescence properties. J Alloys Compd 489:614–619. doi:10.1016/j.allcom.2009.09.127 CrossRefGoogle Scholar
  14. Ji LW, Shih WS, Fang TH, Wu CZ, Peng SM, Meen TH (2010) Preparation and characteristic of hybrid ZnO-polymer solar cells. J Mater Sci 45:3266–3269. doi:10.1007/s10853-010-4336-4 CrossRefGoogle Scholar
  15. Jitianu M, Goia DV (2007) Zinc oxide colloids with controlled size, shape, and structure. J Colloid Interface Sci 309:78–85. doi:10.1016/j.jcis.2006.12.020 CrossRefGoogle Scholar
  16. Jung DJ, Dawber M, Ruediger A, Scotta JF, Kim HH, Kim K (2002) Dielectric loss peak due to platinum electrode porosity in lead zirconate titanate thin-film capacitors. Appl Phys Lett 81:2436–2438. doi:10.1063/1.1509855 CrossRefGoogle Scholar
  17. Karunakaran C, Vijayabalan A, Manikandan G (2012) Photocatalytic and bactericidal activities of hydrothermally synthesized nanocrystalline Cd-doped ZnO. Superlattices Microstruct 51:443–453. doi:10.1016/j.spmi.2012.01.008 CrossRefGoogle Scholar
  18. Kassing R (1975) Calculation of the frequency dependence of the admittance of sclc diodes. Phys Status Solidi A 28:107–117CrossRefGoogle Scholar
  19. Kim KM, Kim HR, Choi KI, Kim HJ, Lee JH (2011a) ZnO hierarchical nanostructures grown at room temperature and their C2H5OH sensor application. Sens Actuators B 155:745–751. doi:10.1016/j.snb.2011.01.040 CrossRefGoogle Scholar
  20. Kim YB, Jeong H, Jang DJ (2011b) Hydrothermal fabrication of well-ordered ZnO nanowire array on Zn foil: room temperature ultraviolet nanolasers. J Nanopart Res 13:6699–6706. doi:10.1007/s11051-011-0576-8 CrossRefGoogle Scholar
  21. Kowsari E (2011) Sonochemically assisted synthesis and application of hollow spheres, hollow prisms, and coralline-like ZnO nanophotocatalyst. J Nanopart Res 13:3363–3376. doi:10.1007/s11051-011-0255-9 CrossRefGoogle Scholar
  22. Kun R, Mogyorósi K, Dékány I (2006) Synthesis and structural and photocatalytic properties of TiO2/montmorillonite nanocomposites. Appl Clay Sci 32:99–110. doi:10.1016/j.clay.2005.09.007 CrossRefGoogle Scholar
  23. Lampert MA, Mark P (1970) Current injection in solids. Academic Press, New YorkGoogle Scholar
  24. Lee JC, Kang KH, Kim SK, Yoon KH, Park IJ, Song J (2000) RF sputter deposition of the high-quality intrinsic and n-type ZnO window layers for Cu(In, Ga)Se2-based solar cell application. Sol Energy Mater Sol Cells 64:185–195CrossRefGoogle Scholar
  25. Liang J, Liu J, Xie Q, Bai S, Yu W, Qian Y (2005) Hydrothermal growth and optical properties of doughnut-shaped ZnO microcrystals. J Phys Chem B 109:9463–9467. doi:10.1021/jp050485j CrossRefGoogle Scholar
  26. Liu P (2006) Facile preparation of monodispersed core/shell zinc oxide@polystyrene (ZnO@PS) nanoparticles via soapless seeded microemulsion polymerization. Colloids Surf A 291:155–161. doi:10.1016/j.colsurfa.2006.05.007 CrossRefGoogle Scholar
  27. Ma X, Liu A, Xu H, Li G (2007) Growth of ramification-like ZnO rods in the presence of polyaniline. Colloid Polym Sci 285:1631–1635. doi:10.1007/s00396-007-1739-0 CrossRefGoogle Scholar
  28. Music S, Dragcevic D, Popovic S (2007) Influence of synthesis route on the formation of ZnO particles and their morphologies. J Alloys Compd 429:242–249. doi:10.1016/j.jallcom.2006.03.084 CrossRefGoogle Scholar
  29. Nan CW, Tschöpe A, Holten S, Kliem H, Birringer R (1999) Grain size-dependent electrical properties of nanocrystalline ZnO. J Appl Phys 85:7735–7740. doi:10.1063/1.370578 CrossRefGoogle Scholar
  30. Naszályi L, Deák A, Hild E, Ayral A, Kovács AL, Hórvölgyi Z (2006) Langmuir–Blodgett films composed of size-quantized ZnO nanoparticles: fabrication and optical characterization. Thin Solid Films 515:2587–2595. doi:10.1016/j.tsf.2006.05.006 CrossRefGoogle Scholar
  31. Németh J, Rodríguez-Gattorno G, Díaz D, Vázquez-Olmos AR, Dékány I (2004) Synthesis of ZnO nanoparticles on a clay mineral surface in dimethyl sulfoxide medium. Langmuir 20:2855–2860CrossRefGoogle Scholar
  32. Ni Y, Wu G, Zhang X, Cao X, Hu G, Tao A, Yang Z, Wei X (2008) Hydrothermal preparation, characterization and property research of flowerlike ZnO nanocrystals built up by nanoflakes. Mater Res Bull 43:2919–2928. doi:10.1016/j.materresbull.2007.12.004 CrossRefGoogle Scholar
  33. Pal U, Santiago P (2005) Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. J Phys Chem B 109:15317–15321CrossRefGoogle Scholar
  34. Pál E, Hornok V, Oszkó A, Dékány I (2009) Hydrothermal synthesis of prism-like and flower-like ZnO and indium-doped ZnO structures. Colloids Surf A 340:1–9. doi:10.1016/j.colsurfa.2009.01.020 CrossRefGoogle Scholar
  35. Poplavskyy D, So F (2006) Bipolar carrier transport in a conjugated polymer by complex admittance spectroscopy. J Appl Phys 99:033707–033709. doi:10.1063/1.2149495 CrossRefGoogle Scholar
  36. Rodríguez-Gattorno G, Santiago-Jacinto P, Rendon-Vázquez L, Németh J, Dékány I, Díaz D (2003) Novel synthesis pathway of ZnO nanoparticles from the spontaneous hydrolysis of zinc carboxylate salts. J Phys Chem B 107:12597–12604CrossRefGoogle Scholar
  37. Sepulvada-Guzman S, Reeja-Jayan B, Rosa E, Torres-Castro A, Gonzalez-Gonzales V, Jose-Yacaman M (2009) Synthesis of assembled ZnO structures by precipitation method in aqueous media. Mater Chem Phys 115:172–178. doi:10.1016/j.matchemphys.2008.11.030 CrossRefGoogle Scholar
  38. Shao J, Wright GT (1961) Characteristics of the space-charge-limited dielectric diode at very high frequencies. Solid State Electron 3:291–303CrossRefGoogle Scholar
  39. Sharma BK, Khare N, Ahmad S (2009) A ZnO/PEDOT:PSS based inorganic/organic hetrojunction. Solid State Commun 149:771–774. doi:10.1016/j.ssc.2009.02.035 CrossRefGoogle Scholar
  40. Shim JW, Kim JW, Han SH, Chang IS, Kim HK, Kang HH, Lee OS, Suh KD (2002) Zinc oxide/polymethylmethacrylate composite microspheres by in situ suspension polymerization and their morphological study. Colloids Surf A 207:105–111CrossRefGoogle Scholar
  41. Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol–gel process: quantized aggregation, gelation, and crystal growth an concentrated ZnO colloids. J Am Chem Soc 113:2826–2833CrossRefGoogle Scholar
  42. Sun Y, Fox NA, Riley DJ, Ashfold MNR (2008) Hydrothermal growth of ZnO nanorods aligned parallel to the substrate surface. J Phys Chem C 112:9234–9239. doi:10.1021/jp8019107 CrossRefGoogle Scholar
  43. Szabó T, Németh J, Dékány I (2004) Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties. Colloids Surf A 230:23–35. doi:10.1016/j.colsurfa.2003.09.010 CrossRefGoogle Scholar
  44. Tay YY, Li S, Boey F, Cheng YH, Liang MH (2007) Growth mechanism f spherical ZnO nanostructures synthesized via colloid chemistry. Physica B 394:373–376. doi:10.1016/j.physb.2006.12.0662 CrossRefGoogle Scholar
  45. Tong Y, Liu Y, Dong L, Zhao D, Zhang J, Lu Y, Shen D, Fan X (2006) Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J Phys Chem B 110:20263–20267. doi:10.1021/jp063312i CrossRefGoogle Scholar
  46. Wang Z, Qian X, Yin J, Zhu Z (2004) Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency. J Solid State Chem 177:2144–2149. doi:10.1016/j.jssc.2003.10.026 CrossRefGoogle Scholar
  47. Wang Z, Huang B, Liu X, Qin X, Zhang X, Wei J, Wang P, Yao S, Zhang Q, Jing X (2008) Photoluminescence studies from ZnO nanorods arrays synthesized by hydrothermal method with polyvinyl alcohol as surfactant. Mater Lett 62:2637–2639. doi:10.1016/j.matlet.2008.01.020 CrossRefGoogle Scholar
  48. Xia C, Wang N, Lidong L, Lin G (2008) Synthesis and characterization of waxberry-like microstructures ZnO for biosensors. Sens Actuators B 129:268–273. doi:10.1016/j.snb.2007.08.003 CrossRefGoogle Scholar
  49. Xiao Q (2009) Synthesis and characterization of 3D ZnO superstructures via a template-free hydrothermal method. Powder Technol 189:103–107. doi:10.1016/j.powtec.2008.06.008 CrossRefGoogle Scholar
  50. Xingfu Z, Zhaolin H, Yiqun F, Weiping D, Nanping X (2008) Hollow microsphere assembly of Zn nanosheets. Mater Chem Phys 112:592–595. doi:10.1016/j.matchemphys.2008.06.025 CrossRefGoogle Scholar
  51. Yang Y, Lai H, Xu H, Tao C, Yang H (2010) Morphology-luminescence correlation in europium-doped ZnO nanomaterials. J Nanopart Res 12:217–225. doi:10.1007/s11051-009-9598-x CrossRefGoogle Scholar
  52. Yavari I, Mahjoub AR, Kowsari E, Movahedi M (2009) Synthesis of ZnO nanostructures with controlled morphology and size in ionic liquids. J Nanopart Res 11:861–868. doi:10.1007/s11051-008-9485-x CrossRefGoogle Scholar
  53. Yu J, Li C, Liu S (2008) Effect of PSS on morphology and optical properties of ZnO. J Colloid Interface Sci 326:433–438. doi:10.1016/j.jcis.2008.07.052 CrossRefGoogle Scholar
  54. Zhang LZ, Tang GQ (2004) Preparation, characterization and optical properties of nanostructured ZnO thin films. Opt Mater 27:217–220. doi:10.1016/j.optmat.2004.03.002 CrossRefGoogle Scholar
  55. Zhang H, Yang D, Ji Y, Ma X, Xu J, Que D (2004) Low temperature synthesis of flower-like ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J Phys Chem B 108:3955–3958. doi:10.1021/jp036826f CrossRefGoogle Scholar
  56. Zhang J, Wang S, Wang Y, Xu M, Xia H, Zhang S, Huang W, Guo X, Wu S (2009) ZnO hollow spheres: preparation, characterization, and gas sensing properties. Sens Actuators B 139:411–417. doi:10.1016/j.snb.2009.03.014 CrossRefGoogle Scholar
  57. Zhao W, Song X, Yin Song Yin Z, Gan C, Chen G, Sun S (2008) Self-assembly of ZnO nanosheets into nanoflowers at room temperature. Mater Res Bull 43:3171–3176. doi:10.1016/jmaterresbull.2007.11.013 CrossRefGoogle Scholar
  58. Zhong JB, Li JZ, Lu Y, He XY, Zeng J, Hu W, Shen YC (2012) Fabrication of Bi3+-doped ZnO with enhanced photocatalytic performance. Appl Surf Sci 258:4929–4933. doi:10.1016/j.apsusc.2012.01.121 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Edit Pál
    • 1
  • Viktória Hornok
    • 2
  • Robert Kun
    • 1
  • Vladimir Chernyshev
    • 1
  • Torben Seemann
    • 3
  • Imre Dékány
    • 2
  • Matthias Busse
    • 1
    • 3
  1. 1.Faculty of Production Engineering, FB 4, Near Net Shape TechnologiesUniversity of BremenBremenGermany
  2. 2.Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of SciencesSzegedHungary
  3. 3.Fraunhofer Institute for Manufacturing Technology and Advanced Materials Research (IFAM)BremenGermany

Personalised recommendations