Skip to main content
Log in

Bifunctional Au-nanorod@Fe3O4 nanocomposites: synthesis, characterization, and their use as bioprobes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Multifunctional nanostructures containing magnetite and gold have warranted interest due to their significant applications in biotechnology and medical diagnosis. In the present study, Au-nanorod@Fe3O4 core–shell nanocomposites are synthesized by the decomposition of Fe(acac)3 onto Au-nanorods (GNRs) through a solvothermal reaction using octylamine as a reductive reagent. The reaction conditions, including temperature, concentration, and molar ratio of Fe and Au elements, are investigated to obtain the desired nanocomposites. The sizes of nanocomposites are observed to be 30–50 nm in length and ca. 20 nm in diameter for GNR cores, and ca. 5 nm in thickness for Fe3O4 shells. The compositions are investigated by X-ray photoelectron spectroscopy instrument. The surface-enhanced Raman scattering (SERS) of the sample is studied using 4-aminothiophenol as an imitational object. The magnetic property is characterized by a quantum magnetometer at 300 K. Folic acid is connected on the surface of GNR@Fe3O4 nanocomposite through surface modification to form a probe nanostructure for cancer cells. The nanocomposites could be used to separate HeLa cells from the culture medium by an external magnetic field, and further shows a pronounced SERS effect in the detection of HeLa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alper JD, Schmidt AJ, Chiesa M, Chen G, Schifferli KH, Das SK (2008) Probing the gold nanorod–ligand–solvent interface by plasmonic absorption and thermal decay. J Phy Chem C 112:13320–13323

    Article  Google Scholar 

  • Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, Liu J, Wei Y, Li Y (2007) Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano 1:293–298

    Article  CAS  Google Scholar 

  • Beaune G, Dubertret B, Clement O, Vayssettes C, Cabuil V, Menager C (2007) Giant vesicles containing magnetic nanoparticles and quantum dots: feasibility and tracking by fiber confocal fluorescence microscopy. Angew Chem Int Ed 46:5421–5424

    Article  CAS  Google Scholar 

  • Benfer M, Reul R, Betz T, Kissel T (2012) Folic acid-decorated nanocomposites prepared by a simple solvent displacement method. Macromol Biosci 12:438–445

    Article  CAS  Google Scholar 

  • Charlier J, Cousty J, Xie ZX, Vasset-Le Poulennec C, Bureau C (2000) Adsorption of substituted pyrrolidone molecules on Au(III): an STM and XPS study. Surf Interface Anal 30:283–287

    Article  CAS  Google Scholar 

  • Chiang IC, Chen DH (2007) Synthesis of monodisperse Fe–Au nanoparticles with tunable magnetic and optical properties. Adv Funct Mater 17:1311–1316

    Article  CAS  Google Scholar 

  • Choi SH, Na HB, Park YI, An K, Kwon SG, Jang Y, Park M, Moon J, Son JS, Song IC, Moon WK, Hyeon T (2008) Simple and generalized synthesis of oxide–metal heterostructured nanoparticles and their applications in multimodal biomedical probes. J Am Chem Soc 130:15573–15580

    Article  CAS  Google Scholar 

  • Chudasama B, Vala AK, Andhariya N, Upadhyay RV, Mehta RV (2009) Enhanced antibacterial activity of bifunctional Fe3O4-Ag core–shell nanostructures. Nano Res 2:955–965

    Article  CAS  Google Scholar 

  • Costi R, Saunder AE, Banin U (2010) Colloidal hybrid nanostructures: a new type of functional materials. Angew Chem Int Ed 49:4878–4897

    Article  CAS  Google Scholar 

  • Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35:1195–1208

    Article  CAS  Google Scholar 

  • Dixit V, Van de Bossche J, Sherman DM, Thompson DH, Andres RP (2006) Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjugate Chem 17:603–609

    Article  CAS  Google Scholar 

  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  • Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  • Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542

    Article  CAS  Google Scholar 

  • Gao J, Zhang B, Gao Y, Pan Y, Zhang X, Xu B (2007) Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: a simple preparation for multifunctional nanostructures. J Am Chem Soc 129:11928–11935

    Article  CAS  Google Scholar 

  • Gole A, Stone JW, Gemmill WR, zur Loye HC, Murphy CJ (2008) Iron oxide coated gold nanorods: synthesis, characterization, and magnetic manipulation. Langmuir 24:6232–6237

    Article  CAS  Google Scholar 

  • Guo SJ, Dong SJ, Wang EK (2009) A general route to construct diverse multifunctional Fe3O4/metal hybrid nanostructures. Chem Eur J 15:2416–2424

    Article  CAS  Google Scholar 

  • Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimmers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  • Hu F, Wei L, Zhou Z, Ran Y, Li Z, Gao M (2006) Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater 18:2553–2556

    Article  CAS  Google Scholar 

  • Hu H, Xiong L, Zhou J, Li F, Cao T, Huang C (2009) Multimodal-luminescence core–shell nanocomposites for targeted imaging of tumor cells. Chem Eur J 15:3577–3584

    Article  CAS  Google Scholar 

  • Hu H, Wang Z, Pan L, Zhao S, Zhu S (2010) Ag-coated Fe3O4@SiO2 three-ply composite microspheres: synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering. J Phys Chem C 114:7738–7742

    Article  CAS  Google Scholar 

  • Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20

    Article  CAS  Google Scholar 

  • Jia X, Chen D, Jiao X, Zhai S (2009) Environmentally-friendly preparation of water-dispersible magnetite nanoparticles. Chem Commun 45:968–970

    Article  Google Scholar 

  • Jun BH, Noh MS, Kim J, Kim G, Kang H, Kim MS, Seo YT, Baek J, Kim JH, Park J, Kim S, Kim YK, Hyeon T, Cho MH, Jeong DH (2010) Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small 6:119–125

    Article  CAS  Google Scholar 

  • Kang T, Yoo SM, Yoon I, Lee SY, Kim B (2010) Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett 10:1189–1193

    Article  CAS  Google Scholar 

  • Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS, Yang I, Kim JS, Kim SK, Cho MH, Hyeon T (2006) Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Ed 45:7754–7758

    Article  CAS  Google Scholar 

  • Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2976

    Article  CAS  Google Scholar 

  • Kumar S, Jones M, Lo SS, Scholes GD (2007) Nanorod heterostructures showing photoinduced charge separation. Small 3:1633–1639

    Article  CAS  Google Scholar 

  • Le Ru EC, Meyer M, Etchegoin PG (2006) Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J Phys Chem B 110:1944–1948

    Article  Google Scholar 

  • Lee JS, Shevchenko EV, Talapin DV (2008) Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. J Am Chem Soc 130:9673–9675

    Article  CAS  Google Scholar 

  • Lee Y, Garcia MA, Huls NAF, Sun S (2010) Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. Angew Chem Int Ed 49:1271–1274

    Article  CAS  Google Scholar 

  • Levin CS, Hofmann C, Ali TA, Kelly AT, Morosan E, Nordlander PK, Whitmire H, Halas NJ (2009) Magnetic–plasmonic core–shell nanoparticles. ACS Nano 3:1379–1388

    Article  CAS  Google Scholar 

  • Li MJ, Chen Z, Yam VW-W, Zu Y (2008) Multifunctional ruthenium(II) polypyridine complex-based core–shell magnetic silica nanocomposites: magnetism, luminescence, and electrochemiluminescence. ACS Nano 2:905–912

    Article  CAS  Google Scholar 

  • Li D, Teoh WY, Gooding JJ, Selomulya C, Amal R (2010a) Functionalization strategies for protease immobilization on magnetic nanoparticles. Adv Funct Mater 20:1767–1777

    Article  CAS  Google Scholar 

  • Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010b) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395

    Article  CAS  Google Scholar 

  • Li SZ, Pedano ML, Chang SH, Mirkin CA, Schatz GC (2010c) Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods. Nano Lett 10:1722–1727

    Article  CAS  Google Scholar 

  • Liu YJ, Chu HY, Zhao YP (2010) Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations. J Phys Chem C 114:8176–8183

    Article  CAS  Google Scholar 

  • Lu LH, Kobayashi A, Tawa K, Ozaki Y (2006) Silver nanoplates with special shapes: controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties. Chem Mater 18:4894–4901

    Article  CAS  Google Scholar 

  • Lu J, Jiao X, Chen D, Li W (2009) Solvothermal synthesis and characterization of Fe3O4 and γ-Fe2O3 nanoplates. J Phys Chem C 113:4012–4017

    Article  CAS  Google Scholar 

  • Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  • Nie SM, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  • Nikoobacht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003) Surface-enhanced Raman scattering studies on aggregated gold nanorods. J Phys Chem A 107:3372–3378

    Article  CAS  Google Scholar 

  • Perez JM, Josephson LT, Loughlin O, Hogemann D, Weissleder R (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20:816–820

    CAS  Google Scholar 

  • Pully VV, Otto C (2009) The intensity of the 1,602 cm−1 band in human cells is related to mitochondrial activity. J Raman Spectrosc 40:473–475

    Article  CAS  Google Scholar 

  • Qiu JD, Xiong M, Liang RP, Peng HP, Liu F (2009) Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application. Biosens Bioelectron 24:2649–2653

    Article  CAS  Google Scholar 

  • Roca M, Haes AJ (2008) Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. J Am Chem Soc 130:14273–14279

    Article  CAS  Google Scholar 

  • Salgueirino-Maceira V, Correa-Duarte MA (2007) Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications. Adv Mater 19:4131–4144

    Article  CAS  Google Scholar 

  • Santra S, Liesenfeld B, Dutta D, Chatel D, Batich CD, Tan WH, Moudgil BM, Mericle RAJ (2005) Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells. Nanosci Nanotechnol 5:899–904

    Article  CAS  Google Scholar 

  • Shevchenko EV, Bodnarchuk MI, Kovalenko MV, Talapin DV, Smith RK, Aloni S, Heiss W, Alivisatos AP (2008) Gold/iron oxide core/hollow–shell nanoparticles. Adv Mater 20:4323–4329

    Article  CAS  Google Scholar 

  • Smolensky ED, Neary MC, Zhou Y, Berquo TS, Pierre VC (2011) Fe3O4@organic@Au: core–shell nanocomposites with high saturation magnetisation as magnetoplasmonic MRI contrast agents. Chem Commun 47:2149–2151

    Article  CAS  Google Scholar 

  • Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chem 16:1181–1188

    Article  CAS  Google Scholar 

  • Sun Z, Yang Z, Zhou J, Yeung MH, Ni W, Wu H, Wang J (2009) A general approach to the synthesis of gold-metal sulfide core–shell and heterostructures. Angew Chem Int Ed 48:2881–2885

    Article  CAS  Google Scholar 

  • Teng X, Black D, Watkins N, Gao Y, Yang H (2003) Platinum–maghemite core–shell nanoparticles using a sequential synthesis. Nano Lett 3:261–264

    Article  CAS  Google Scholar 

  • Tian ZQ, Ren B, Li JF, Yang ZL (2007) Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commun 43:3514–3534

    Article  Google Scholar 

  • Tian Y, Yu B, Li X, Li K (2011) Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents. J Mater Chem 21:2476–2481

    Article  CAS  Google Scholar 

  • Tokareva I, Minko S, Fendler JH, Hutter E (2004) Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Am Chem Soc 126:15950–15951

    Article  CAS  Google Scholar 

  • Van Mane HJ, Otto C (2009) Cholesterol esters are detected by Raman microspectroscopy in HeLa cells. J Raman Spectrosc 4:117–118

    Google Scholar 

  • Wang C, Irudayaraj J (2010) Multifunctional magnetic–optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 6:283–289

    Article  CAS  Google Scholar 

  • Wang C, Chen Y, Wang T, Ma Z, Su Z (2008a) Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing. Adv Funct Mater 18:355–361

    Article  CAS  Google Scholar 

  • Wang L, Park HY, Lim SI-I, Schadt MJ, Mott D, Luo J, Wang X, Zhong C (2008b) Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles. J Mater Chem 18:2629–2635

    Article  CAS  Google Scholar 

  • Wu JB, Lin YF, Wang J, Chang PJ, Tasi CP, Lu CC, Yang YW (2003) Correlation between N 1s XPS binding energy and bond distance in metal amido, imido, and nitrido complexes. Inorg Chem 42:4516–4518

    Article  CAS  Google Scholar 

  • Xu C, Xie J, Ho D, Wang C, Kohler N, Walsh EG, Morgan JR, Chin YE, Sun S (2008) Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew Chem Int Ed 47:173–176

    Article  CAS  Google Scholar 

  • Xu C, Wang B, Shou S (2009) Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J Am Chem Soc 131:4216–4217

    Article  CAS  Google Scholar 

  • Xue C, Millstone JE, Li S, Mirkin CA (2007) Plasmon-driven synthesis of triangular core–shell nanoprisms from gold seeds. Angew Chem Int Ed 46:8436–8439

    Article  CAS  Google Scholar 

  • Yang J, Ying JY (2010) Diffusion of gold from the inner core to the surface of Ag2S nanocrystals. J Am Chem Soc 132:2114–2115

    Article  CAS  Google Scholar 

  • Yu H, Chen M, Rice PM, Wang SX, White RL, Sun S (2005) Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett 5:379–382

    Article  CAS  Google Scholar 

  • Zhai Y, Zhai J, Wang Y, Guo S, Ren W, Dong S (2009) Fabrication of iron oxide core/gold shell submicrometer spheres with nanoscale surface roughness for efficient surface-enhanced Raman scattering. J Phys Chem C 113:7009–7014

    Article  CAS  Google Scholar 

  • Zhang H, Zhong X, Xu JJ, Chen HY (2008) Fe3O4/Polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties. Langmuir 24:13748–13752

    Article  CAS  Google Scholar 

  • Zhang J, Liu X, Guo X, Wu S, Wang S (2010a) A general approach to fabricate diverse noble-metal (Au, Pt, Ag, Pt/Au)/Fe2O3 hybrid nanomaterials. Chem Eur J 16:8108–8116

    CAS  Google Scholar 

  • Zhang M, He X, Chen L, Zhang Y (2010b) Preparation of IDA-Cu functionalized core–satellite Fe3O4/polydopamine/Au magnetic nanocomposites and their application for depletion of abundant protein in bovine blood. J Mater Chem 20:10696–10704

    Article  CAS  Google Scholar 

  • Zhou X, Xu W, Wang Y, Kuang Q, Shi Y, Zhong L, Zhang Q (2010) Fabrication of cluster/shell Fe3O4/Au nanoparticles and application in protein detection via a SERS method. J Phys Chem C 114:19607–19613

    Article  CAS  Google Scholar 

  • Zhu ZN, Meng HF, Liu WJ, Liu XF, Gong JX, Qiu XH, Jiang L, Wang D, Tang ZY (2011) Superstructures and SERS properties of gold nanocrystals with different shapes. Angew Chem Int Ed 50:1593–1596

    Article  CAS  Google Scholar 

  • Zinin PV, Misra A, Kamemoto L, Yu Q, Hu N, Sharma SK (2010) Visible, near-infrared, and ultraviolet laser-excited Raman spectroscopy of the monocytes/macrophages (U937) cells. J Raman Spectrosc 41:268–274

    CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the Beijing Natural Science Foundation (No. 2103048), Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR20100718), and Beijing Excellent Talent (2010D005016000008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Tian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4307 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Chen, L., Zhang, J. et al. Bifunctional Au-nanorod@Fe3O4 nanocomposites: synthesis, characterization, and their use as bioprobes. J Nanopart Res 14, 998 (2012). https://doi.org/10.1007/s11051-012-0998-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0998-y

Keywords

Navigation