Skip to main content
Log in

Ionic transport in nanocapillary membrane systems

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Species transport in nanocapillary membrane systems has engaged considerable research interest, presenting technological challenges and opportunities, while exhibiting significant deviations from conventionally well understood bulk behavior in microfluidics. Nonlinear electrokinetic effects and surface charge of materials, along with geometric considerations, dominate the phenomena in structures with characteristic lengths below 100 nm. Consequently, these methods have enabled 3D micro- and nanofluidic hybrid systems with high-chemical selectivity for precise manipulation of mass-limited quantities of analytes. In this review, we present an overview of both fundamental developments and applications of these unique nanocapillary systems, identifying forces that govern ion and particle transport, and surveying applications in separation, sensing, mixing, and chemical reactions. All of these developments are oriented toward adding important functionality in micro-total analysis systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adiga SP, Jin CM, Curtiss LA, Monteiro-Riviere NA, Narayan RJ (2009) Nanoporous membranes for medical and biological applications. WIREs Nanomed Nanobiotechnol 1:568–581

    Article  CAS  Google Scholar 

  • Agerbaek M, Keiding K (1995) Streaming potential during cake filtration of slightly compressible particles. J Colloid Interface Sci 169:255–342

    Article  Google Scholar 

  • Ali M, Tahir MN, Siwy ZS, Neumann R, Tremel W, Ensinger W (2011) Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels. Anal Chem 83:1673–1680

    Article  CAS  Google Scholar 

  • Bohn PW (2009) Nanoscale control and manipulation of molecular transport in chemical analysis. Annu Rev Anal Chem 2:279–296

    Article  CAS  Google Scholar 

  • Boukany PE, Morss A, Liao W, Henslee B, Jung H, Zhang X, Yu B, Wang X, Wu Y, Li L, Gao K, Hu X, Zhao X, Hemminger O, Lu W, Lafyatis GP, Lee LJ (2011) Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat Nanotechnol 6:747–754

    Article  CAS  Google Scholar 

  • Bowski L, Saini R, Ryu D, Vieth W (1971) Kinetic modeling of hydrolysis of sucrose by invertase. Biotechnol Bioeng 13:641–656

    Article  CAS  Google Scholar 

  • Burgmayer P, Murray RW (1982) An ion gate membrane: electrochemical control of ion permeability through a membrane with an embedded electrode. J Am Chem Soc 4:6139–6140

    Article  Google Scholar 

  • Burgreen D, Nakache F (1964) Electrokinetic flow in ultrafine capillary slits. J Phys Chem 68:1084–1091

    Article  Google Scholar 

  • Buyukserin F, Kohli P, Wirtz M, Martin C (2007) Electroactive nanotube membranes and redox-gating. Small 3:266–270

    Article  CAS  Google Scholar 

  • Cannon DM Jr, Kuo T-C, Bohn PW, Sweedler JV (2003) Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures. Anal Chem 75:2224–2230

    Article  CAS  Google Scholar 

  • Cervera J, Patricio R, Manzanares JA, Mafe S (2010) Incorporating ionic size in the transport equations for charged nanopores. Microfluid Nanofluid 9:41–53

    Article  Google Scholar 

  • Chang I-H, Tulock JJ, Liu J, Cannon DM Jr, Bohn PW, Sweedler JV, Cropeck DM (2005) Miniaturized lead sensor based on lead-specific DNAzyme in a nanocapillary interconnected microfluidic device. Environ Sci Technol 39:3756–3761

    Article  CAS  Google Scholar 

  • Chatterjee AN, Cannon DM Jr, Gatimu EN, Sweedler JV, Aluru NR, Bohn PW (2005) Modeling and simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects. J Nanopart Res 7:507–516

    Article  CAS  Google Scholar 

  • Chowdiah P, Wasan D, Gidaspow D (1983) On the interpretation of streaming potential data in nonaqueous media. Colloids Surf 7:291–299

    Article  CAS  Google Scholar 

  • Chun K-Y, Stroeve P (2002) Protein transport in nanoporous membranes modified with self-assembled monolayers of functionalized thiols. Langmuir 18:4653–4658

    Article  CAS  Google Scholar 

  • Chun K-Y, Mafe S, Ramirez P, Stroeve P (2006) Protein transport through gold-coated, charged nanopores: Effects of applied voltage. Chem Phys Lett 418:561–564

    Article  CAS  Google Scholar 

  • Conlisk AT (2005) The Debye-Huckel approximation: Its use in describing electroosmotic flow in micro- and nanochannels. Eletrophoresis 26:1896–1912

    Article  CAS  Google Scholar 

  • Conlisk AT (2012) Essentials of micro- and nanofluidics: with applications to the biological and chemical sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Conlisk AT, McFerran J, Zheng Z, Hansford D (2002) Mass transfer and flow in electrically charged micro- and nano-channels. Anal Chem 74:2139–2150

    Article  CAS  Google Scholar 

  • Conlisk AT, Kumar A, Rampersaud A (2007) Ionic and biomolecular transport in nanochannels. Nanoscale Microscale Thermophys Eng 11:177–199

    Article  CAS  Google Scholar 

  • Contento NM, Branagan SP, Bohn PW (2011) Electrolysis in nanochannels for in situ reagent generation in confined geometries. Lab Chip 11:3634–3641

    Article  CAS  Google Scholar 

  • Daiguji H, Oka Y, Shirono K (2005) Nanofluidic diode and bipolar transistor. Nano Lett 5:2274–2280

    Article  CAS  Google Scholar 

  • Datta S, Conlisk AT, Kanani DM, Zydney AL, Fissell WH, Roy S (2010) Characterizing the surface charge of synthetic nanomembranes by the streaming potential method. J Colloid Interface Sci 348:85–95

    Article  CAS  Google Scholar 

  • Dhathathreyan A (2011) Real-time monitoring of invertase activity immobilized in nanoporous aluminum oxide. J Phys Chem B 115:6678–6682

    Article  CAS  Google Scholar 

  • Fa K, Tulock JJ, Sweedler JV, Bohn PW (2005) Profiling pH gradients across nanocapillary array membranes connecting microfluidic channels. J Am Chem Soc 127:13928–13933

    Article  CAS  Google Scholar 

  • Fievet P, Szymczyk A, Aoubiza B, Pagetti J (2000) Evaluation of three methods for the characterisation of the membrane-solution interface: streaming potential, membrane potential and electrolyte conductivity inside pores. J Membr Sci 168:87–100

    Article  CAS  Google Scholar 

  • Flachsbart BR, Wong K, Iannacone JM, Abante EN, Vlach RI, Rauchfuss PA, Bohn PW, Sweedler JV, Shannon MA (2006) Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6:667–674

    Article  CAS  Google Scholar 

  • Gong M, Flachsbart BR, Shannon MA, Bohn PW, Sweedler JV (2008a) Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes. Electrophoresis 29:1237–1244

    Article  CAS  Google Scholar 

  • Gong M, Kim BY, Flachsbart BR, Shannon MA, Bohn PW, Sweedler JV (2008b) An on-chip fluorogenic enzyme assay using a multilayer microchip interconnected with a nanocapillary array membrane. IEEE Sens J 8:601–607

    Article  CAS  Google Scholar 

  • Han J, Fu J, Schoch RB (2008) Molecular sieving using nanofilters: past, present and future. Lab Chip 8:23–33

    Article  CAS  Google Scholar 

  • He Y, Gillespie D, Boda D, Vlassiouk I, Eisenberg RS, Siwy ZS (2009) Tuning transport properties of nanofluidic devices with local charge inversion. J Am Chem Soc 131:5194–5202

    Article  CAS  Google Scholar 

  • Huang S, Yin Y (2006) Transport and separation of small organic molecules through nanotubules. Anal Sci 22:1005–1009

    Article  CAS  Google Scholar 

  • Huisman IH, Pradanos P, Calvo JI, Hernandez A (2000) Electroviscous effects, streaming potential, and zeta potential in polycarbonate track-etched membranes. J Membr Sci 178:79–92

    Article  CAS  Google Scholar 

  • Hulteen JC, Jirage KB, Martin CR (1998) Introducing chemical transport selectivity into gold nanotubule membranes. J Am Chem Soc 120:6603–6604

    Article  CAS  Google Scholar 

  • Jagerszki G, Gyurcsanyi R, Hofler L, Pretsch E (2007) Hybridization-modulated ion fluxes through peptide-nucleic-acid-functionalized gold nanotubes. A new approach to quantitative label-free DNA analysis. Nano Lett 7:1609–1612

    Article  CAS  Google Scholar 

  • Jirage KB, Hulteen JC, Martin CR (1999) Effect of thiol chemisorption on the transport properties of gold nanotubule membranes. Anal Chem 71:4913–4918

    Article  CAS  Google Scholar 

  • Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948

    Article  CAS  Google Scholar 

  • Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:123114

    Article  Google Scholar 

  • Kemery PJ, Steehler JK, Bohn PW (1998) Electric field mediated transport in nanometer diameter channels. Langmuir 14:2884–2889

    Article  CAS  Google Scholar 

  • Khandurina J, Jacobson SC, Waters LC, Foote RS, Ramsey JM (1999) Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Anal Chem 71:1815–1819

    Article  CAS  Google Scholar 

  • Kim BY, Swearingen CB, Ho JA, Romanova EV, Bohn PW, Sweedler JV (2007) Direct immobilization of Fab’ in nanocapillaries for manipulating mass-limited samples. J Am Chem Soc 129:7620–7626

    Article  CAS  Google Scholar 

  • Kim BY, Yang J, Gong M, Flachsbart BR, Shannon MA, Bohn PW, Sweedler JV (2009) Multidimensional separation of chiral amino acid mixtures in a multilayered three-dimensional hybrid microfluidic/nanofluidic device. Anal Chem 81:2715–2722

    Article  CAS  Google Scholar 

  • Kim S, Ko S, Kang K, Han J (2010) Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 5:297–301

    Article  CAS  Google Scholar 

  • Kohli P, Harrell CC, Cao Z, Gasparac R, Tan W, Martin CR (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305:984–986

    Article  CAS  Google Scholar 

  • Ku J-R, Lai S-M, Ileri N, Ramirez P, Mafe S, Stroeve P (2007) pH and ionic strength effects on amino acid transport through Au-nanotubule membranes charged with self-assembled monolayers. J Phys Chem C 111:2965–2973

    Article  CAS  Google Scholar 

  • Kuo T-C, Sloan LA, Sweedler JV, Bohn PW (2001) Manipulating molecular transport through nanoporous membranes by control of electrokinetic flow- effect of surface charge density and Debye length. Langmuir 17:6298–6303

    Article  CAS  Google Scholar 

  • Kuo T-C, Cannon DM Jr, Chen Y, Tulock JJ, Shannon MA, Sweedler JV, Bohn PW (2003a) Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal Chem 75:1861–1867

    Article  CAS  Google Scholar 

  • Kuo T-C, Cannon DM Jr, Shannon MA, Bohn PW, Sweedler JV (2003b) Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sens Actuators, A 102:223–233

    Article  Google Scholar 

  • Kuo T-C, Kim H-K, Cannon DM Jr, Shannon MA, Sweedler JV, Bohn PW (2004) Nanocapillary arrays effect mixing and reaction in multilayer fluidic structures. Angew Chem 116:1898–1901

    Article  Google Scholar 

  • Lee SB, Martin CR (2002) Electromodulated molecular transport in gold-nanotube membranes. J Am Chem Soc 124:11850–11851

    Article  CAS  Google Scholar 

  • Lokuge I, Wang X, Bohn PW (2007) Temperature-controlled flow switching in nanocapillary array membranes mediated by poly(N-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization. Langmuir 23:305–311

    Article  CAS  Google Scholar 

  • Lu Y, Liu J (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 17:580–588

    Article  CAS  Google Scholar 

  • Martin CR, Nishizawa M, Jirage K, Kang MS, Lee SB (2001a) Controlling ion-transport selectivity in gold nanotubule membranes. Adv Mater 13:1351–1362

    Article  CAS  Google Scholar 

  • Martin CR, Nishizawa M, Jirage K, Kang M (2001b) Investigations of the transport properties of gold nanotubule membranes. J Phys Chem B 105:1925–1934

    Article  CAS  Google Scholar 

  • Mulero R, Prabhu AS, Freedman KJ, Kim MJ (2010) Nanopore-based devices for bioanalytical applications. JALA 15:243–252

    CAS  Google Scholar 

  • Nam S-W, Rooks MJ, Kim K-B, Rossnagel SM (2009) Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett 9:2044–2048

    Article  CAS  Google Scholar 

  • Napoli M, Eijkel J, Pennathur S (2010) Nanofluidic technology for biomolecule applications: a critical review. Lab Chip 10:957–985

    Article  CAS  Google Scholar 

  • Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268:700–702

    Article  CAS  Google Scholar 

  • Nystrom M, Lindstrom M, Matthiasson E (1989) Streaming potential as a tool in the characterization of ultrafiltration membranes. Colloids Surf 36:297–312

    Article  CAS  Google Scholar 

  • Oukhaled A, Cressiot B, Bacri L, Pastoriza-Gallego M, Betton J-M, Bourhis E, Jede R, Gierak J, Auvray L, Pelta J (2011) Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. ACS Nano 5:3628–3638

    Article  CAS  Google Scholar 

  • Pardon G, van der Wijngaart W (2011) Electrostatic gating of ion and molecule transport through a nanochannel-array membrane. Proc IEEE Solid-State Sens Actuators Microsyst Conf (Transducers) Beijing, China, pp 1610-1613

  • Perera DNT, Ito T (2010) Cyclic voltammetry on recessed nanodisk-array electrodes prepared from track-etched polycarbonate membranes with 10-nm diameter pores. Analyst 135:172–176

    Article  CAS  Google Scholar 

  • Piruska A, Branagan SP, Cropek DM, Sweedler JV, Bohn PW (2008) Electrokinetically driven fluidic transport in integrated three-dimensional microfluidic devices incorporating gold-coated nanocapillary array membranes. Lab Chip 8:1625–1631

    Article  CAS  Google Scholar 

  • Piruska A, Branagan SP, Minnis AB, Wang Z, Cropeck DM, Sweedler JV, Bohn PW (2010a) Electrokinetic control of fluid transport in gold-coated nanocapillary array membranes in hybrid nanofluidic-microfluidic devices. Lab Chip 10:1237–1244

    Article  CAS  Google Scholar 

  • Piruska A, Gong M, Sweedler JV, Bohn PW (2010b) Nanofluidics in chemical analysis. Chem Soc Rev 39:1060–1072

    Article  CAS  Google Scholar 

  • Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5:1147–1155

    Article  CAS  Google Scholar 

  • Powell MR, Cleary L, Davenport M, Shea KJ, Siwy ZS (2011) Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat Nanotechnol 6:798–802

    Article  CAS  Google Scholar 

  • Prakash S, Yeom J, Jin N, Adesida I, Shannon MA (2007) Characterization of ionic transport at the nanoscale. Proc ASME IMECE, N: J Nanoeng Nanosyst 220:45–52

    Google Scholar 

  • Prakash S, Piruska A, Gatimu EN, Bohn PW, Sweedler JV, Shannon MA (2008) Nanofluidics: Systems and Applications. IEEE Sens J 8:441–450

    Article  CAS  Google Scholar 

  • Prakash S, Karacor M, Benerjee S (2009) Surface modification in microsystems and nanosystems. Surf Sci Rep 64:233–254

    Article  CAS  Google Scholar 

  • Prakash S, Pinti M, Bellman K (2012a) Variable cross-section nanopores fabricated in silicon nitride membranes using a transmission electron microscope. J Micromech Microeng in press

  • Prakash S, Pinti M, Bhushan B (2012b) Theory, fabrication and applications of microfluidic and nanofluidic biosensors. Philos Trans R Soc London, Ser A 370:2269–2303

    Article  CAS  Google Scholar 

  • Qiao R, Aluru N (2003) Ion concentration and velocity in nanochannel electroosmotic flows. J Chem Phys 118:4692–4701

    Article  CAS  Google Scholar 

  • Qiao R, Aluru N (2004) Charge inversion and flow reversal in a nanochannel electroosmotic flow. Phys Rev Lett 92:198301

    Article  CAS  Google Scholar 

  • Qiao R, Georgiadis J, Aluru N (2006) Differential ion transport induced electroosmosis and internal recirculation in heterogeneous osmosis membranes. Nano Lett 6:995–999

    Article  CAS  Google Scholar 

  • Renkin E (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38:225–243

    CAS  Google Scholar 

  • Rice C, Whitehead R (1965) Electrokinetic flow in a narrow cylindrical capillary. J Phys Chem 69:4017–4024

    Article  CAS  Google Scholar 

  • Sadr R, Yoda M, Gnanaprakasam P, Conlisk AT (2006) Velocity measurements inside the diffuse electric double layer in electro-osmotic flow. Appl Phys Lett 89:044103

    Article  Google Scholar 

  • Schasfoort RB, Schlautmann S, Hendrikse J, van den Berg A (1999) Field-effect flow control for microfabricated fluidic networks. Science 286:942–944

    Article  CAS  Google Scholar 

  • Schibel AE, Heider EC, Harris JM, White HS (2011) Fluorescence microscopy of the pressure-dependent structure of lipid bilayers suspended across conical nanopores. J Am Chem Soc 133:7810–7815

    Article  CAS  Google Scholar 

  • Schoch RB, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80:839–883

    Article  CAS  Google Scholar 

  • Shannon MA, Flachsbart BR, Iannacone JM, Wong K, Cannon Jr DM, Fa K, Sweedler JV, Bohn PW (2005) Nanofluidic interconnects within a multilayer microfluidic chip for attomolar biochemical analysis and molecular manipulation. Proc 3rd Ann IEEE Int EMBS Special Topic Conf Microtechnol Medicine Biology Kahuhu, pp 257-259

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    Article  CAS  Google Scholar 

  • Sparreboom W, van den Berg A, Eijkel J (2009) Principles and applications of nanofluidic transport. Nat Nanotechnol 4:713–720

    Article  CAS  Google Scholar 

  • Sparreboom W, van den Berg A, Eijkel J (2010) Transport in nanofluidic systems: a review of theory and applications. New J Phys 12:015004

    Article  Google Scholar 

  • Szymczyk A, Aoubiza B, Fievet P, Pagetti J (1999) Electrokinetic phenomena in homogeneous cylindrical pores. J Colloid Interface Sci 216:285–296

    Article  CAS  Google Scholar 

  • Talaga DS, Li J (2009) Single-Molecule Protein Unfolding in Solid State Nanopores. J Am Chem Soc 131:9287–9297

    Article  CAS  Google Scholar 

  • Tulock JJ, Shannon MA, Bohn PW, Sweedler JV (2004) Microfluidic Separation and Gateable Fraction Collection for Mass-Limited Samples. Anal Chem 76:6419–6425

    Article  CAS  Google Scholar 

  • Vitarelli M, Prakash S, Talaga D (2011) Determining nanocapillary geometry from electrochemical impedance spectroscopy using a variable topology network circuit model. Anal Chem 83:533–541

    Article  CAS  Google Scholar 

  • Vlassiouk I, Siwy ZS (2007) Nanofluidic diode. Nano Lett 7:552–556

    Article  CAS  Google Scholar 

  • Wang Y-C, Stevens A, Han J (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77:4293–4299

    Article  CAS  Google Scholar 

  • Wang Z, King TL, Branagan SP, Bohn PW (2009) Enzymatic activity of surface-immobilized horseradish peroxidase confined to micrometer- to nanometer-scale structures in nanocapillary array membranes. Analyst 134:851–859

    Article  CAS  Google Scholar 

  • Wernette DP, Swearingen CB, Cropek DM, Lu Y, Sweedler JV, Bohn PW (2006) Incorporation of a DNAzyme into Au-coated nanocapillary array membranes with an internal standard for Pb(II) sensing. Analyst 131:41–47

    Article  CAS  Google Scholar 

  • Yan R, Liang W, Fan R, Yang P (2009) Nanofluidic diodes based on nanotube heterojunctions. Nano Lett 9:3820–3825

    Article  CAS  Google Scholar 

  • Zhang Y, Timperman AT (2003) Integration of nanocapillary arrays into microfluidic devices for use as analyte concentrators. Analyst 128:537–542

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mark Shannon and Vikhram Swaminathan acknowledge support through WaterCAMPWS, Center for Advanced Materials for the Purification of Water with Systems, a US National Science Foundation funded Science and Technology Center under contract CTS-0120978, and the US Defense Advanced Research Projects Agency under grant W911NF-09-C-0079. The portion of this study conducted at the University of Notre Dame was supported by the US National Science Foundation under grants DBI 0852741 and CBET 0120978, by the US Department of Energy Office of Basic Energy Sciences DE FG02 07ER15851, and by the US Army Corps of Engineers contract W9132-10-0010. Shaurya Prakash and Marie Pinti acknowledge partial support through the US Defense Advanced Research Projects Agency grant W911NF-09-C-0079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Shannon.

Additional information

Special Issue Editors: Mamadou Diallo, Neil Fromer, Myung S. Jhon

This article is part of the Topical Collection on Nanotechnology for Sustainable Development

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaminathan, V.V., Gibson, L.R., Pinti, M. et al. Ionic transport in nanocapillary membrane systems. J Nanopart Res 14, 951 (2012). https://doi.org/10.1007/s11051-012-0951-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0951-0

Keywords

Navigation